Concurrent Realizability on Conjunctive Structures - Ecole Centrale de Marseille
Communication Dans Un Congrès Année : 2023

Concurrent Realizability on Conjunctive Structures

Résumé

This work aims at exploring the algebraic structure of concurrent processes and their behavior independently of a particular formalism used to define them. We propose a new algebraic structure called conjunctive involutive monoidal algebra (CIMA) as a basis for an algebraic presentation of concurrent realizability, following ideas of the algebrization program already developed in the realm of classical and intuitionistic realizability. In particular, we show how any CIMA provides a sound interpretation of multiplicative linear logic. This new structure involves, in addition to the tensor and the orthogonal map, a parallel composition. We define a reference model of this structure as induced by a standard process calculus and we use this model to prove that parallel composition cannot be defined from the conjunctive structure alone.
Fichier principal
Vignette du fichier
main.pdf (743.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04083002 , version 1 (27-04-2023)
hal-04083002 , version 2 (28-04-2023)

Licence

Identifiants

  • HAL Id : hal-04083002 , version 2

Citer

Emmanuel Beffara, Félix Castro, Mauricio Guillermo, Étienne Miquey. Concurrent Realizability on Conjunctive Structures. FSCD 2023 - 8th International Conference on Formal Structures for Computation and Deduction, Jul 2023, Rome, Italy. ⟨hal-04083002v2⟩
196 Consultations
55 Téléchargements

Partager

More