Skip to Main content
Skip to Navigation
Toggle navigation
Sign in
Sign in
Sign in with ORCID
se connecter avec Fédération
Create account
Forgot your password?
Have you forgotten your login?
fr
en
Laboratoire Jacques-Louis Lions
Home
Latest submissions
Latest publications
Browse
By subject
By author
By year
Simple search
Home
Last submissions
Yacine Chitour, Ihab Haidar, Paolo Mason, Mario Sigalotti. Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems. 2022. ⟨hal-03668881⟩
Roberta Bianchini, Thierry Paul. Reflection of internal gravity waves in the form of quasi-axisymmetric beams. 2022. ⟨hal-03665580⟩
Beatrice Battisti, Tobias Blickhan, Guillaume Enchery, Virginie Ehrlacher, Damiano Lombardi, et al.. Wasserstein model reduction approach for parametrized flow problems in porous media. 2022. ⟨hal-03664061⟩
Adrien Beguinet, Virginie Ehrlacher, Roberta Flenghi, Maria Fuente-Ruiz, Olga Mula, et al.. Deep learning-based schemes for singularly perturbed convection-diffusion problems. 2022. ⟨hal-03664049⟩
Felipe Galarce Marin. Inverse problems in haemodynamics. Fast estimation of blood flows from medical data. Bioengineering. Sorbonne Université, 2021. English. ⟨NNT : 2021SORUS392⟩. ⟨tel-03663790⟩
François Murat, Ali Sili. A remark about the periodic homogenization of certain composite fibered media. Networks & Heterogeneous Media, American Institute of Mathematical Sciences, 2020, 15 (1), pp.125-142. ⟨10.3934/nhm.2020006⟩. ⟨hal-03662190⟩
M Kuznetsov, J Clairambault, V Volpert. Perspectives in cancer treatment. Reply to comments on "Improving cancer treatments via dynamical biophysical models". Physics of Life Reviews, Elsevier, In press. ⟨hal-03661846⟩
Gontran Lance, Emmanuel Trélat, Enrique Zuazua. Numerical issues and turnpike phenomenon in optimal shape design. Roland Herzog; Matthias Heinkenschloss; Dante Kalise; Georg Stadler; Emmanuel Trélat. Optimization and control for partial differential equations: Uncertainty quantification, open and closed-loop control, and shape optimization, 29, De Gruyter, pp.343-366, 2022, Radon Series on Computational and Applied Mathematics, 9783110695960. ⟨10.1515/9783110695984⟩. ⟨hal-03660786⟩
Thomas Borsoni, Laurent Boudin, Francesco Salvarani. Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions. 2022. ⟨hal-03648331v2⟩
M Bonnivard, I Pažanin, F Suárez-Grau. A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions. 2022. ⟨hal-03281723v2⟩
Julien Fatome, Josselin Garnier, S. Pitois, M. Petit, Guy Millot, et al.. All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function. Optical Fiber Technology, Elsevier, 2008, Vol.14 (Issue 1), pp.84-91. ⟨10.1016/j.yofte.2007.07.005⟩. ⟨hal-00282997⟩
Benoît Perthame, Alexandre Poulain. Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility. European Journal of Applied Mathematics, Cambridge University Press (CUP), 2020, ⟨10.1017/S0956792520000054⟩. ⟨hal-02274417v4⟩
Mario González, Andrés Almansa, Pauline Tan. Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior. SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, In press. ⟨hal-03151455v4⟩
Alain Haraux, Louis Tebou. ENERGY DECAY ESTIMATES FOR THE WAVE EQUATION WITH SUPERCRITICAL NONLINEAR DAMPING. 2022. ⟨hal-03649784⟩
Claire David, Michel Lapidus. Weierstrass Fractal Drums -I − A Glimpse of Complex Dimensions. 2022. ⟨hal-03642326⟩
Nicolás Torres, Benoît Perthame, Delphine Salort. A multiple time renewal equation for neural assemblies with elapsed time model. 2021. ⟨hal-03324280v3⟩
L Alasio. Towards a new mathematical model of the visual cycle. 2022. ⟨hal-03517553v2⟩
Gaëtan Vignoud. Synaptic plasticity in stochastic neuronal networks. Mathematics [math]. Sorbonne Université, 2022. English. ⟨tel-03640150⟩
Ludovic Godard-Cadillac. Quasi-geostrophic vortices and their desingularization. Analysis of PDEs [math.AP]. Sorbonne Université, 2020. English. ⟨NNT : 2020SORUS437⟩. ⟨tel-03168120v2⟩
Noemi David. Phenotypic heterogeneity in a model of tumor growth: existence of solutions and incompressible limit. 2022. ⟨hal-03636939⟩
Search
Number of fulltext
2 907
Number of reference
1 504
Submissions evolution
Keywords
Boltzmann equation
Discontinuous Galerkin
Numerical simulation
Optimization
Domain decomposition
Kinetic equations
Finite volume
Controllability
Finite element
Asymptotics
Exponential stability
Cell division cycle
Analyse asymptotique
Calculus of variations
Blood flow
Numerical methods
FreeFem++
Heat equation
Boundary conditions
Finite elements
Transport equation
Periodic homogenization
Finite volume scheme
Stability
Modeling
Tumor growth
Data assimilation
Pontryagin maximum principle
Contact
Shape optimization
Partial differential equations
Null controllability
Gamma-convergence
Schrödinger equation
Cell population dynamics
Décomposition de domaine
Observability
Gross-Pitaevskii equation
Imaging in complex media
Fluid-structure interaction
Mathematical biology
Numerical simulations
Finite volume method
Inverse problem
Finite element method
Error estimates
Asymptotic behavior
Asymptotic analysis
Hamilton-Jacobi equation
Gradient flow
Viscosity solutions
Traveling waves
Inverse problems
Wave equation
Cardiac electrophysiology
Optimal control
Level set method
Analyse numérique
Hemodynamics
Control
Backstepping
Hamilton-Jacobi equations
Relaxation
Chemotaxis
A posteriori error estimates
Shells
Maximum principle
A posteriori error estimate
Homogenization
Numerical analysis
Incompressible fluid
Adaptive evolution
Convergence
Computational fluid dynamics
Cancer
Nonlinear elasticity
Integro-differential equations
Grenoble
Free surface flows
Reaction-diffusion equations
Linear elasticity
Dimension reduction
Stabilization
Modélisation
Interaction fluide-structure
Structured populations
Elasticity
Mean field games
Contrôle optimal
Mathematical modeling
Navier-Stokes equations
Hyperbolic systems
General relativity
Maxwell equations
Uncertainty quantification
Neural networks
Population dynamics
Finite volumes
Existence
Domain decomposition methods