Target identification using dictionary matching of generalized polarization tensors
Abstract
The aim of this paper is to provide a fast and efficient procedure for (real-time) target identification in imaging based on matching on a dictionary of precomputed generalized polarization tensors (GPTs). The approach is based on some important properties of the GPTs and new invariants. A new shape representation is given and numerically tested in the presence of measurement noise. The stability and resolution of the proposed identification algorithm is numerically quantified. We compare the proposed GPT-based shape representation with a moment-based one.
Origin | Files produced by the author(s) |
---|