On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing - Laboratoire de Probabilités et Modèles Aléatoires
Journal Articles Bernoulli Year : 2016

On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing

Abstract

This paper introduces a new framework to study the asymptotical behavior of the empirical distribution function (e.d.f.) of Gaussian vector components, whose correlation matrix $\Gamma^{(m)}$ is dimension-dependent. Hence, by contrast with the existing literature, the vector is not assumed to be stationary. Rather, we make a ''vanishing second order" assumption ensuring that the covariance matrix $\Gamma^{(m)}$ is not too far from the identity matrix, while the behavior of the e.d.f. is affected by $\Gamma^{(m)}$ only through the sequence $\gamma_m=m^{-2} \sum_{i\neq j} \Gamma_{i,j}^{(m)}$, as $m$ grows to infinity. This result recovers some of the previous results for stationary long-range dependencies while it also applies to various, high-dimensional, non-stationary frameworks, for which the most correlated variables are not necessarily next to each other. Finally, we present an application of this work to the multiple testing problem, which was the initial statistical motivation for developing such a methodology.
Fichier principal
Vignette du fichier
DR2016_published.pdf (327.08 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-00739749 , version 1 (08-10-2012)
hal-00739749 , version 2 (03-05-2013)
hal-00739749 , version 3 (28-12-2022)

Identifiers

Cite

Sylvain Delattre, Etienne Roquain. On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing. Bernoulli, 2016, 22 (1), pp.302-324. ⟨10.3150/14-BEJ659⟩. ⟨hal-00739749v3⟩
546 View
350 Download

Altmetric

Share

More