Cilia to basement membrane signalling is a biomechanical driver of autosomal dominant polycystic kidney disease
Résumé
Autosomal dominant polycystic kidney disease (ADPKD), which affects around 4 million patients worldwide, is characterized by the formation of multiple tubule derived cysts, which grossly enlarge both kidneys and progressively compromise renal function. ADPKD mainly results from mutations in PKD1 , leading to the loss of polycystin-1 protein, which localizes to primary cilia. Primary cilia are required for cyst formation but the biomechanical changes underlying cystogenesis upon loss of polycytin-1 are unknown. We find that cilia and polycystin-1 shape the tubular basement membrane (TBM). Combining orthologous mouse models with a tubule-on-chip approach allowing manipulations of TBM stiffness, we find that cilia regulate the composition and biomechanical properties of the TBM. In the setting of polycytin-1 loss, reduced TBM stiffness and increased luminal pressure act as biomechanical drivers of cyst formation. These findings suggest a novel biomechanical model for ADPKD and unveil that cilia to TBM signalling controls kidney shape.
Domaines
Sciences du Vivant [q-bio]Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
licence |