Disaggregation Patterns for Secure AI Systems - l'unam - université nantes angers le mans
Poster De Conférence Année : 2024

Disaggregation Patterns for Secure AI Systems

Résumé

Disaggregation is a growing trend in large-scale artificial intelligence (AI) systems to overcome hardware and software resource limitations and improve performance while preserving security and privacy. This paper takes a closer look at different dimensions of the concept, in AI, security and hardware. We identify two key design patterns that may be combined to build optimized disaggregated AI architectures and discuss benefits and limitations for AI and security. Using a large language model use case, we also highlight some key trade-offs between performance, resource allocation and security for different disaggregation strategies in hardware and in software.
Fichier principal
Vignette du fichier
HEPC-2024-Disaggregation-Patterns.-Secure-AI-Systems.pdf (1.47 Mo) Télécharger le fichier
HPEC-2024-Disaggregation-Patterns-Poster.pdf (203.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence
licence

Dates et versions

hal-04717976 , version 1 (02-10-2024)

Licence

Identifiants

  • HAL Id : hal-04717976 , version 1

Citer

Mohamed Islam Ghamri, Marc Lacoste, Divi De Lacour. Disaggregation Patterns for Secure AI Systems. HPEC 2024 - 28th Annual IEEE High Performance Extreme Computing Virtual Conference, Sep 2024, Boston (MA), United States. pp.1-2, 2024. ⟨hal-04717976⟩
105 Consultations
39 Téléchargements

Partager

More