Non-linear optimal perturbations in subcritical instabilities - Département de mécanique
Chapitre D'ouvrage Année : 2005

Non-linear optimal perturbations in subcritical instabilities

Carlo Cossu

Résumé

Non-linear optimal perturbations are defined here as those of minimum energy leading to subcritical instability. We show that a necessary condition for an initial perturbation to be a non-linear optimal is that the initial perturbation energy growth is zero. The fulfillment of this condition does not depend on the disturbance amplitude but only on the linearized operator as long as the non-linearity conserves energy. Saddle point solutions and linear optimal perturbations leading to maximum transient growth both satisfy the non-linear optimality condition. We discuss these issues on low-dimensional models of subcritical transition for which non-linear optimals and the minimum threshold energy are computed.
Fichier principal
Vignette du fichier
IutamBristol_Cossu_AuthorPreprint.pdf (572.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01024964 , version 1 (20-12-2024)

Identifiants

Citer

Carlo Cossu. Non-linear optimal perturbations in subcritical instabilities. Tom Mullin, Rich Kerswell. IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, 77, Springer, pp.251-266, 2005, Fluid Mechanics and its Applications, 978-1-4020-4048-1. ⟨10.1007/1-4020-4049-0_14⟩. ⟨hal-01024964⟩
106 Consultations
0 Téléchargements

Altmetric

Partager

More