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Abstract 

Soil microbial communities play an important role in nutrient cycling and nutrient 

availability, especially in unimproved soils. In grazed pastures, sheep urine causes local 

changes in nutrient concentration which may be a source of heterogeneity in microbial 

community structure.  In the present study, we investigated the effects of synthetic urine on 

soil microbial community structure, using physiological (community level physiological 

profiling; CLPP), biochemical (phospholipid fatty acid analysis, PLFA) and molecular 

(denaturing gradient gel electrophoresis; DGGE) fingerprinting methods. PLFA data 

suggested that synthetic urine treatment had no significant effect on total microbial (total 

PLFA), total bacterial or fungal biomass. However, significant changes in microbial 

community structure were observed with both PLFA and DGGE data. PLFA data suggested 

that synthetic urine induced a shift towards communities with higher concentrations of 

branched fatty acids.  DGGE banding patterns derived from control and treated soils differed, 

due to a higher proportion of DNA sequences migrating only to the upper regions of the gel in 

synthetic urine-treated samples. The shifts in community structure measured by PLFA and 

DGGE were significantly correlated with one another, suggesting that both datasets reflected 

the same changes in microbial communities.  The changes caused by synthetic urine addition 

accounted for only 10-15% of the total variability in community structure, suggesting that, 

overall microbial community structure was reasonably stable and that changes were confined 

to a small proportion of the communities.  Synthetic urine treatment caused a significant 

increase in the average well colour development of Biolog® microplates, suggesting an 

increase in bacterial population density that was corroborated by the 100-fold increase in 

bacterial culturable cell concentrations. Rhizosphere-C source utilisation was preferentially 

stimulated. Significant correlations between DGGE, PLFA and CLPP principal components 

were observed but, with the exception of relationship between the first DGGE principal 
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component and the third PLFA principal component, the scatter diagrams were highly 

dispersed. These data provide evidence that urine deposition contributes to heterogeneity in 

microbial community structure in upland grassland soils. 

 

 

 

 

Introduction 

Acidic grasslands are common in the uplands of NW Europe.  In these soils the 

availability to plants of nutrients such as N and P can depend heavily on microbial activity, as 

they tend not to receive inputs of nutrients in the form of fertilizers.  As a result, microbial 

communities of temperate upland grasslands have been widely studied across a range of 

scales in order to identify the factors that regulate their community structure.  Factors that 

have been shown to cause shifts in community structure range from management practices 

such as fertiliser inputs and grassland improvement to geographic location [1,2,3].   

Influences are thought to be exerted through rhizodeposition, litter and root diversity and soil 

physiochemical properties [4,1].  Seasonal changes in microbial community structure have 

also been observed [5] and Ritz et al. [6] found that community structure was subject to a high 

degree of local spatial variability. Clegg et al. [7] also found that differences in genetic 

composition of microbial communities from the same site could be as great as those among 

communities from sites separated by several hundred kilometres.  This raises the question of 

the ecological importance of the relationships between microbial community structure and the 

factors that have been found to play a regulatory role, such as inputs of carbon and nitrogen: 

how strong are these relationships in light of the temporal and spatial variability that is 

present? 

Ritz et al. [6] reported a high spatial variability in biomass, phospholipid fatty acid and 

community level physiological profiles in a previous study of the soils of Sourhope upland 
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grasslands, but little change in the background genetic structure of the microbial community.  

They hypothesised that the spatial variations could be caused by some significant localised 

input or redistribution of nutrients, as would occur with sheep urine. Urine excretion 

represents an important flux of nutrients in extensively grazed grasslands and causes local 

changes in soil solution chemistry such as increases in nutrient concentration (N and P) and 

soil pH [8].  Williams et al. [9] found that carbon utilisation patterns of soil microbial 

communities in upland pastures were altered by treatment with urine, generally leading to an 

increase in substrate utilisation 2 to 5 weeks after urine addition.  However, they did not 

quantify the impact of urine deposition in relation to the overall variability of microbial 

community structure at the sites studied.  To investigate whether such disturbances do in fact 

impact on soil microbial community structure, we treated an upland pasture with synthetic 

urine and then measured short-term effects on such communities, using physiological, 

biochemical and molecular fingerprinting.  The impact of urine deposition on soil microbial 

community structure in an extensive upland soil is described and quantified. .  

 

Materials and Methods 

Soils and sampling 

Samples were collected from Fasset Hill, Sourhope (55
o 
28’ 30” N; 2

o 
14’ W), an 

upland grazed grassland at Sourhope Research Station in the Scottish Borders [10]. The 

underlying soil is a brown ranker (Haplumbrept; FAO/UNESCO, 1994) derived from old red 

sandstone, with a pH of 3.3 - 6.4 and organic C content of 11.4%. The site is a permanent 

Festuca ovina - Agrostis capillaris - Galium saxatile unimproved grassland, National 

Vegetation Classification - U4a [2], at 370 m above sea level. The grassland has been freely 

grazed by sheep during the summer months for at least 30 y but received no N, P or K 
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fertiliser. Average annual rainfall for the site is 975 mm y
-1

 and the minimum and maximum 

temperatures are -10°C and 27°C, respectively. 

 

Synthetic sheep urine 

 Synthetic sheep urine (SU) was used for the experiment as it was easier to obtain than 

natural sheep urine (NU) and provided a well-defined medium for the experiment. The 

composition of NU is variable, depending on the physiology of the individual animals, their 

diet and water intake [11] and can also change with storage. The composition of the SU used 

was as described by Haynes and Williams [12] and comprised: urea 21.4 g l
-1

, potassium 

bicarbonate (KHCO3), 23.1 g l
-1

, potassium chloride (KCl) 3.8 g l
-1

, potassium sulphate 

(K2SO4) 1.9 g 
-1

and glycine 10.7 g l
-1

. To prevent hydrolysis of urea during storage the 

solutions were prepared and mixed immediately before use. 

 

Field experiment 

Twelve 1 m
2
 plots were selected, each bounded on all sides by a 1 m guard strip. Due to the 

exceptionally dry summer, prior to application of the treatments, the site (all 12 plots) was 

irrigated daily with 1000 l of water, applied through a mist hose, for one week. Five litres of 

water (control) or SU were then applied evenly to each of six replicate plots of 1 m
2
, using a 

watering can fitted with a medium rose. This provided the equivalent of 499.2 kg urea derived 

N ha
-1

, excluding the nitrogen content from glycine. Subsequently, 5 l water was added to 

every plot to wash the treatment into the soil. Two adjacent soil cores from each plot were 

sampled prior to SU or water application, one day and one, two and four weeks after 

application. The cores were typically 8 cm long; with a 3 cm thatch layer and a 1-2 cm 

organic horizon, the remainder being mineral soil.  One core was analysed for pH (1: 4 

soil:vol ratio in 0.01 M CaCl2), moisture content, mineral N and dissolved organic carbon 
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(DOC) content to relate to the population measurements made on the other soil core.  The 

upper 1 cm of the organic horizon was used for all analyses. 

 

Phospholipid fatty acid profiles 

 Lipids from samples were extracted from 1 g of soil samples using the method of 

Frostegård et al. [13]. The extracted fatty acid methyl esters were identified and quantified 

from the retention time of chromatograms and mass spectral comparison on a Hewlett 

Packard 5890 II gas chromatograph equipped with a 5972A mass selective detector (MSD II), 

using standard qualitative bacterial acid methyl ester mix (Supelco; Supelco UK Poole, 

Dorset, UK) that ranged from C11 to C20. Standard fatty acid nomenclature was used as 

described before [14]. An internal standard (C19:0) was used to estimate the total amount of 

PLFA. Microbial biomass was estimated from total amounts of PLFA [13]. PLFA analyses 

were not performed on soils collected at the final harvest (day 29) because the samples did not 

contain enough soil.  Total bacterial PLFA and a fungal biomarker were chosen as in 

Grayston et al. [2].   

 

Community level physiological profiles 

CLPP were constructed using Biolog® GN microplate (Biolog Inc., Hayward, CA, USA) 

together with exudate profile microplates, prepared using Biolog® MT plates containing an 

additional 46 ecologically relevant carbon sources identified mainly as plant root exudates 

[15]. Soil dilution was adjusted to a similar inoculum density of approximately 10
4
 colony 

forming units (cfu) ml
-1

 (based on the growth on 1/10 strength Oxoid tryptone-soy agar) and 

150 µl inoculated into each well. Microplates were incubated for five days at 15
o
C and colour 

development (carbon utilisation) was measured daily as absorbance at 590 nm (A590), using a 

microplate reader (Emax, Molecular Devices, Oxford, UK). Two forms of CLPP data were 
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analysed: untransformed raw difference data, in which the colour response of the control well 

was subtracted from the colour of each of the C source wells, and transformed data, where 

colour values of individual wells were divided by the average well colour development 

(AWCD) of each Biolog® GN and MT plate, to account for differences in average colour 

development (see Results section). Raw data were analysed to determine whether SU 

treatment had an effect on AWCD profiles. Colour development in individual wells was 

measured as the area under the colour development profile [16].  This measure was chosen 

over single point absorbance readings at a given AWCD [17] and curve fitting [16] because it 

is more independent of incubation time than the former [18] and does not suffer from 

problems of models of the latter not fitting the data adequately [16].  The area under the 

colour development profile is sensitive to the inoculation density and care was taken to ensure 

the inoculum density was similar for all samples.  

 

Nucleic acid extraction and PCR amplification of DNA 

Nucleic acids were extracted from 0.5 g of soil as described in Griffiths et al. (2000) 

[19]. Eubacterial primers were used to amplify 160 bases of the V3 hypervariable region of 

the bacterial 16S rRNA gene from extracted DNA. A nested PCR approach was used, with 

primers 27f [20] and Pfr [21] as forward and reverse primers, respectively, for first round 

amplification, followed by a second PCR-round using primers 357f, with GC-clamp and 530 r 

[22]. Amplification reactions for both PCR rounds were carried out in a 50 µl PCR mixture 

(final volume) containing: 1xNH4 Reaction Buffer (Bioline, London, UK), 1.5 mM MgCl2, 

0.25 mM of each dNTP, 4 µM of each forward and reverse primer, 0.25 µg T4 gene 32 

protein (Roche Diagnostics, Lewes, UK), 0.5 µl formamide, 1 U Biotaq DNA polymerase 

(Bioline), 1.2 U Bio-X-ACT polymerase (Bioline) and 1 µl DNA template. Template was 

either genomic DNA or 1:50 diluted PCR product from the first round. T4 gene 32 protein 
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was used to neutralise the effects of the PCR inhibitors that were present in the DNA 

extracted from the root fragments [23]. PCR amplification and yields were checked under UV 

light on ethidium bromide stained agarose gels (1.2%, w/v). The PCR program used was as 

follows: 5 min at 95 ºC (1 cycle); 30 s at 94ºC, 30 s at 55ºC, 180 s at 72ºC (10 cycles); 30 s at 

92ºC, 30 s at 55ºC, 180 s at 72ºC (25 cycles); 10 min at 72ºC (1 cycle). Extension time was 

reduced to 45 s for the second PCR round.  

 

DGGE analysis of amplified DNA 

Amplified 16S rRNA gene fragments were analysed by denaturing gradient gel 

electrophoresis (DGGE) as described by Muyzer et al. [22]. Gel characteristics were: 8% 

(w/v) bis-acrylamide, denaturing gradient of 42% to 72% (100% denaturing being defined as 

40% v/v formamide and 7 M urea). Electrophoresis was performed for 12 h at 100V and 60ºC 

on a DCode System (Bio-Rad laboratories, Hercules, USA). After electrophoresis, gels were 

stained with silver nitrate and scanned at a 1200 dpi resolution with an Epson GT-9600 

scanner. The staining procedure was as follows (S. Mahmood, pers. comm. adapted from [3]): 

gels were fixed by shaking for 2 h in a fixing solution (10% ethanol (v/v), 0.5% glacial acetic 

acid (v/v), 89.5% water). Gels were then incubated with shaking in silver nitrate solution 

(0.2% w/v, in fixing solution) for 20 min. Following rinsing of the silver nitrate solution, gels 

were shaken in a developing solution (3% NaOH (w/v) and 1.3% formaldehyde, prepared in 

water) until DNA bands appeared (30 - 60 min). Gels were then preserved in ethanol-glycerol 

preservative solution (25% ethanol, 10% glycerol, 65% H2O) and stored in sealed plastic bags 

at room temperature.  

DGGE banding patterns of the digitised gel images were analysed with Phoretix 1D 

advanced software (version 4.01, NonLinear Dynamics Ltd., Newcastle-upon-Tyne, UK). 

Bands were identified visually and the relative intensity of each band, within individual 
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profiles of different samples, was quantified by the software. Bands in each gel were 

normalised for variations in DNA loading by detecting the lane with the lowest amount of 

DNA (i.e. lowest total band intensity) and then the faintest band within that lane. The 

percentage intensity of the faintest band in the lane with the lowest loading was taken as the 

limit of detection. Bands with a lower percentage of total band volume in all other lanes were 

excluded from the analysis. The intensity of each band was then calculated by determining the 

proportion of the total band intensity in a particular lane, and the resulting normalized data 

was used in multivariate analysis. A simple binary matrix describing the presence or absence 

of bands at each position was also analysed.   

 

Plate counts 

Culturable cell concentration was determined by serial dilution of cell suspensions used to 

inoculate the CLPP plates to 10
-1

 in ¼ strength Ringer’s solution and spread plating onto 

tryptone soy agar plates (0.1 strength, Oxoid) containing cycloheximide (50 mg l
-1

). Plates 

were incubated at 25°C and counted regularly until no new growth was observed. No new 

growth was observed during the second week of incubation and therefore the counts at the end 

of the first week were used for analysis. Cell concentrations were expressed as the number of 

colony forming units (cfu) g
-1

. 

  

Statistical analysis 

Underlying patterns in PLFA, DGGE band intensity and CLPP data were investigated 

using principal component analysis (PCA) to determine whether microbial community 

structure and carbon utilisation patterns varied among the different levels of time, SU 

treatment and their interaction.  Although widely used, the appropriateness of PCA for 

ecological data has been questioned and it has been suggested that correspondence analysis 
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may be more suitable (e.g. [24]).  We analysed the data using both PCA and correspondence 

analysis and these resulted in substantially the same conclusions (i.e. similar treatment effects 

accounting for a similar proportion of total variance or inertia, respectively, and similar fatty 

acids and DGGE bands responsible for discrimination).  For this reason, only PCA results are 

presented. 

Principal component analysis forms linear combinations of the variables with the aim 

of maximising the inter-sample variance.  In general a small number of combinations, or 

components, accounts for most of the sample variation and the statistical analysis can proceed 

using the values of the samples for these components.  These are called the sample scores.  

Often most of the interesting biological information is contained in the first few principal 

components.  In our case these new sample scores were used as the variables to answer the 

basic biological questions, such as determining treatment effects or finding relationships with 

other variables (e.g. pH).  The similarity of the biological information contained in the 

different analyses of microbial communities was also assessed using the sample scores. 

The fatty acids, carbon sources and DGGE bands most responsible for the 

discrimination were identified by reference to the principal component loadings. In total, 49 

fatty acids were detected. However, one of these (17:18t) was absent from all but eight of 

the samples and was removed before PCA. An initial analysis showed that there were large 

differences in microbial biomass (total PLFA) among samples. All but four fatty acids (12:0, 

13:0, 20:4(6, 9, 12, 15) and 20:4(2, 6, 10, 14)) were significantly correlated (P < 0.05) with 

total PLFA, suggesting that these four fatty acids were not of microbial origin. They were also 

removed before PCA. 

Patterns in DGGE data were also investigated using the binary matrix of presence or 

absence of bands at each location.  The similarity between pairs of samples was calculated 

using the simple matching coefficient of similarity, which is based on the proportion of 
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positions in which there is a match between samples (i.e. presence-presence or absence-

absence of bands).  Principal co-ordinate analysis (PCO) was used to identify underlying 

patterns in the similarity data by deriving PCO scores for the samples.   

Two-way analysis of variance (treatment x time) was carried out on the first three 

PLFA and CLPP principal components to identify statistically significant differences between 

the main experimental factors. In order to account for the large differences in microbial 

biomass (total PLFA) among samples, analysis of variance was carried out on individual fatty 

acids with total PLFA as a covariate. To avoid problems associated with gel to gel variation 

only 36 samples were analysed by DGGE on a single gel, resulting in an unbalanced dataset. 

Therefore, DGGE principal components and principal coordinate scores were analysed by 

Residual Maximum Likelihood (REML) to identify significant differences between 

experimental factors.   

All statistical analyses were performed with Genstat 7 (VSN International Ltd, UK). 

Results 

Soil pH and NH4
+
-N concentrations were significantly greater (P<0.001) in those plots 

amended with artificial urine than in plots receiving only water (Table 1), demonstrating that 

the urea application had been successful. NO3
-
-N levels were moderate in all plots, probably 

due to dry/wet deposition rather than nitrification. Dissolved organic carbon (DOC) showed a 

significant (P<0.001) increase in SU-treated plots between days 8 and 15.  

 

PLFA profiles 

No significant effects were found in the two-way analysis of variance (treatment x 

time) for total PLFA (Fig 1), for total bacterial PLFA or for the fungal biomarker 18:2(9, 12). 

A SU treatment effect was found for five fatty acids, nine fatty acids changed significantly 

with time and three showed significant treatment x time interaction (Table 2). The abundance 
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of the branched fatty acids i14:0, a15:0 and i17:0, indicative of Gram positive bacteria [25], 

was significantly greater in the SU-treated plots than in the control plots. The fatty acids a15:0 

and i17:0 also showed significant treatment x time interaction: control levels remained 

constant throughout the sampling period, whilst levels in SU-treated soils increased 

significantly. The abundance of monounsaturated fatty acids was largely unaffected by SU 

treatment, with the exception of trans16:111, which increased significantly, and 17:17, 

which decreased significantly (Table 2). Fatty acids showing significant changes in 

abundance with time and generally increased after incubation for 8 days. Exceptions to this 

were i17:0 and a15:0, which increased after incubation for 1 day, and 16:0 and 20:1, which 

decreased after incubation for 8 days. The ratios of monounsaturated to saturated fatty acids 

were 0.61 for control samples and 0.55 for SU-treated samples and were not significantly 

different. 

The first 3 principal components (PC) accounted for 76% of the total variance among 

samples (58, 12 and 6%, respectively). There were significant effects of SU treatment (P < 

0.014) and time of sampling (P < 0.007) on mean PC scores of the third PC (Fig 2a). The 

third PC also showed significant positive correlation with pH (r
2
 = 0.36, P <0.001), with 

moisture content (r
2
 = 0.34, P <0.001) and with ammonium concentration (r

2
 = 0.27, P 

<0.001). Analysis of the loadings of individual fatty acids indicated that most of the 

differences in the third PC were due to higher concentrations of branched (a15:0, i17:0, 

10Me16:0, i14:0 and 12Me16:0), of cyclopropyl (cy17:0), of monounsaturated (19:18, 

14:19c, 14:19t) and of polyunsaturated (18:3(6, 8, 13)) fatty acids, and lower 

concentrations of the fungal biomarker (18:2(9, 12)), of cyclopropyl (cy19:0) and of 

monounsaturated (17:17, 18:19 and 18:110or11) fatty acids in SU-treated samples.  Most 

of the PLFA loadings for the first PC were positive and similar in magnitude, suggesting that 
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the first PC was related to the total amount of PLFA. A highly significant linear relationship 

(r
2
 = 0.99; P < 0.001) was found between total amount of PLFA and the first PC (Fig 1).  

 

DGGE analysis 

For DGGE profiles derived from SU-treated and control soils, the first three principal 

components accounted for 30% of the total variability in the dataset (12, 10 and 8%, 

respectively). Significant treatment effects were found in the first PC (P = 0.016; Fig 2b).  

The loadings of DNA sequences on the first PC indicated that the separation between treated 

and control soils was due to a higher proportion of sequences in the latter migrating further in 

the gel.  In general, DNA fragments with a high G+C content will migrate further because 

they are harder to denature.  However, other factors can also influence the migration of 

sequences and sequence information is required for more detailed analysis of reasons for 

separation of control and synthetic urine treated soils.  No effect of time of sampling was 

observed.  Principal components scores were not correlated with pH, moisture content, or 

ammonium or nitrate concentrations. 

 

CLPP – Raw data 

The first PC of the raw CLPP data, accounting for 34% of the total variability, was 

significantly correlated with the AWCD of all 141 C-sources (P < 0.001, r
2
 = 0.99; data not 

shown). Inspection of the loadings of individual C-sources indicated that root exudate C-

sources, mainly in the Biolog MT plates, contributed less to the first PC than the majority of 

C-sources in the Biolog® GN plates, suggesting that the relationship between the AWCD and 

C-sources in the two plates differed. This was confirmed by performing PCA on each plate 

separately. Whilst the relationship between the first PC for the Biolog® GN plate and the 

AWCD of all 141 C-sources was virtually unchanged, that between the first PC for the Biolog 
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MT data changed significantly. Furthermore, the mean AWCD of Biolog® GN for all 

samples was significantly higher (P <0.001) than that of Biolog® MT and the first PC for 

each dataset was significantly correlated with the respective AWCD (P <0.001, r
2
 = 0.99 for 

Biolog GN plates and P <0.001, r
2
 = 0.87 for Biolog MT plates).  These data suggest that 

there were two populations of variables and that it would be inappropriate to analyse these 

together without prior normalisation to account for the differences in colour development in 

the different plates. Therefore, individual well colour development values were transformed 

by dividing by the AWCD of the plate to which they belonged, before further multivariate 

analysis.  

Average well colour development for SU-treated samples was significantly higher 

than for control samples in each of the datasets (Biolog® GN and Biolog® MT plates 

analysed individually or together). A greater amount of variance in the AWCD of Biolog® 

MT plates was attributed to treatment differences (F = 10.46, P =0.009) than in the AWCD of 

Biolog® GN plates or of both plates combined (F = 9.43, P = 0.012 and F = 10.05, P <0.01, 

respectively). Furthermore, there was a significant treatment x day interaction in the AWCD 

of the Biolog® MT plates (F = 4.43, P = 0.005). The AWCD of SU-treated samples increased 

until day 15 and started to decline on day 29, whilst the AWCD of control samples was stable 

over time. No significant interaction was observed in the other measurements of AWCD. 

 

CLPP – transformed data 

The first 3 PCs of AWCD-transformed CLPP data accounted for 21% of the total 

variability (8, 7 and 6%, respectively). A significant treatment effect (P < 0.001) was found in 

the second PC (Fig 2c). Sample scores on the first and second PCs were weakly correlated 

with moisture content and with ammonium concentration and pH, respectively. However, 

scatter diagrams showed that the data were highly dispersed. The loadings of individual C-



 15 

sources on the first PC indicated that differences between treated and control samples were 

mainly due to an increase in the use of amino acids (proline, glutamine, alanine, and serine) 

and long chain aliphatic acids (oleic and linolenic acid), and a decrease in the use of phenolic 

acids in SU-treated samples. Utilisation of some carboxylic acids (cis-aconitic acid, glycyl-L-

glutamic acid, D,L -lactic acid, malic acid and citric acid) was stimulated in SU-treated 

samples, whilst utilisation of others (succinic acid, bromosuccinic acid and oxalic acid) was 

depressed. Differences observed in the second PC were primarily due to an increase in 

utilisation of amino acids (glycine, lysine and aspartic acid) and nucleic acid bases (cytosine 

and guanidine) in SU-treated samples. The main factor discriminating treated from control 

samples in the third PC was increased utilisation of sugars and a decreased utilisation of 

amino acids in SU-treated samples.  

 

Plate counts  

Bacterial culturable cell concentrations increased significantly (P < 0.001) in the SU-

treated soils from 2 x 10
7
 cfu g

-1
 soil, in samples taken on day 0, to a maximum of 1.1 x10

9
 

cfu g
-1

 soil in samples taken after incubation for 15 days (Fig 3). Sampling day also had a 

significant effect on bacterial plate counts (P = 0.001) and there was a significant treatment x 

day interaction (P = 0.014). There were significant increases in plate counts in SU-treated 

soils, while plate counts in control samples did not change significantly during the incubation 

(Fig 3). 

 

Comparison of methods 

There were significant correlations between the principal components of the DGGE, 

PLFA and CLPP data. The first PC of the DGGE data was positively correlated with the third 

PC of the PLFA data (r
2
 = 0.47, P < 0.001; Fig 4) and negatively correlated with the first PC 
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of the CLPP data (r
2
 = 0.25, P = 0.002). Sample scores on the first PC of CLPP data were also 

negatively correlated with scores on the second PC of the PLFA data (r
2
 = 0.32, P < 0.001). 

Significant correlations between other DGGE-PCs, CLPP-PCs and PLFA-PCs were found, 

but scatter diagrams showed that the data were also highly dispersed.  

 

Discussion 

PLFA and DGGE profiles 

Differences among samples in total PLFA accounted for 57% of the total variability 

(Fig 1). To ensure that treatment effects were not masked by this large variability, total PLFA 

was included as a covariate in the analysis of variance of individual fatty acids and important 

microbial groups. Total PLFA, which represents microbial biomass [13,26], and the fungal 

biomarker 18:2(9, 12) were not affected by SU addition, which is consistent with results 

obtained at this and another upland grassland site [9]. The lack of treatment effect on total 

bacterial PLFA contrasts with the increase in bacterial colony forming units found here and 

reported previously [9]. This probably reflects the fact that different portions of bacterial 

populations were measured by PLFA extraction and plate counts. Plate counts only measure 

the culturable bacterial types whereas bacterial PLFA gives a measure of total communities, 

including the majority of the community that will not be detected on plates. The significant 

effect of SU addition on culturable bacterial types was not reflected in total PLFA 

measurements, presumably because only a small proportion of soil bacteria are culturable.   

Branched fatty acids are commonly, though not exclusively, found in Gram-positive 

bacteria while monounsaturated fatty acids are often associated with Gram-negative bacteria 

[27]. The content of a number of individual branched fatty acids was significantly higher in 

SU-treated than in control soils, whilst the effect of SU treatment on monounsaturated fatty 

acids was more variable.  These data may indicate that SU treatment caused an increase in the 
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relative abundance of Gram-positive bacteria.  A previous study at this site found that the 

level of many branched fatty acids were affected by the nutrient status of samples, greater 

nutrient availability being associated with high levels of branched fatty acids [6]. 

Changes in pH and mineral N content have previously been reported to influence 

PLFA profiles. Increases in pH, similar in magnitude to those observed here, have caused 

shifts in bacterial community fatty acids indicative of more Gram-negative and fewer Gram-

positive bacteria [14]. Fertilisation with N/P/K resulted in greater proportions of fatty acids 

suggesting increases in Gram-negative bacteria [28]. These results are not consistent with the 

shifts in PLFA profiles observed here. However, Clegg et al. [29] found that branched fatty 

acids were most responsible for the discrimination of undrained, N-fertilised soil and drained 

soil.  

Principal components analysis was used to identify fatty acids that varied in 

combination and to detect changes in underlying patterns in the PLFA profiles caused by SU 

application that may not have been apparent from analysis of individual fatty acids or groups 

of fatty acids representative of large taxonomic groups. This might arise if the effects of an 

environmental factor on a subset of the microbial community were masked by more important 

effects of other environmental factors. PCA also permits assessment of the importance of 

shifts in community structure in relation to the total variability in the data. The first PC 

reflected differences in total PLFA among samples. Subsequent PCs reflect shifts in microbial 

community structure. The second PC was not affected by SU application and may have been 

associated with factors such as vegetation composition or the physical habitat of the 

microorganisms. Significant differences in the abundance of individual fatty acids and in fatty 

acid patterns associated with different vegetation classes have previously been found at this 

site [6]. Scores in the third PC reflected increased abundance of branched fatty acids and a 

variable response of monounsaturated fatty acids in SU-treated samples, corroborating 
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analysis of individual fatty acids. The fatty acids 18:19c, 18:2(9, 12) and 18:3(5, 10, 12) are 

common in fungi [30]. Their variable response to SU treatment suggests that different fungal 

groups may have responded differently to the treatment. Similarly, the two cyclopropyl fatty 

acids made inverse contributions to the difference between control and SU-treated samples. 

Gram negative bacteria contain cyclopropyl fatty acids but rarely together or in similar 

amounts [30,14]. Different groups of Gram negative bacteria responding differently to SU 

application could therefore result in the observed changes in cyclopropyl fatty acids.  

However, the third PC only accounted for 6% of the total variability in PLFA profiles, 

equivalent to approximately 14% of total variability in community structure.   

Shifts in microbial community structure due to SU were also reflected in the DGGE 

band intensity patterns, but not in the presence or absence of bands at each position in the gel. 

Therefore, SU treatment did not result in the appearance of new DDGE bands but rather a 

change in the relative abundance of bands, with an increase in intensity in the upper regions of 

the gel.   It is unlikely that the observed changes in relative band intensity were an 

experimental artefact because the positions of treated and control samples on the gel were 

chosen at random. The first PC of the DGGE data and the third PC of the PLFA data were 

significantly correlated (Fig 4), both showing significant treatment effects and accounting for 

a similar amount of total community structure variability.  This suggests that these PCs 

reflected the same changes in microbial community structure. Thus, treatment with synthetic 

urine favoured microorganisms with high concentrations of branched fatty acids and DNA 

sequences that did not migrate as far as sequences from control soils.  It is possible that these 

data are indicative of a shift in microbial community structure towards Gram positive bacteria 

with a low G+C content, although confirmation would require sequence analysis of DGGE 

bands.  However, the changes only accounted for 10-15% of total community structure 

variability, suggesting that microbial community structure was reasonably stable despite the 
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significant changes in soil solution chemistry.  The relative importance of the effect of SU 

addition in each of the analyses was different and this is reflected in the fact that the 

significant effect of SU addition is seen in the first PC of DGGE data (suggesting that it was 

the single most important factor influencing band intensity variability) but seen in the third 

PC of the PLFA data (suggesting that other factors are more important, environmental factors, 

intrinsic biological variation or experimental error for example). 

  

Community level physiological profiles 

The first PC of the raw sole carbon source utilisation data shows that plate AWCD or 

overall carbon use was significantly greater in the SU-treated samples that in the control 

samples. Plate AWCD is related to the inoculation density of total bacterial cells and of total 

active cells [17], suggesting that SU treatment stimulated bacterial growth or increased the 

proportion of active bacterial cells. This is consistent with the increase in bacterial colony 

forming units observed here and in a previous experiment at this site [9]. In the present 

experiment, colony forming units in treated samples had increased between 10- and 100-fold 

15 days after SU application (Fig 3). 

Comparison of AWCD values suggested that SU treatment preferentially stimulated 

bacteria with an ability to use rhizosphere C-sources and in particular the neutral amino acids 

glycine and valine. Differential substrate availability is believed to cause shifts in microbial 

community structure and in substrate utilisation profiles [31,32,33]. For example, 

carbohydrate use was enhanced but amino acid and polymer use impaired in soils amended 

with glucose, whilst soils amended with hydroxyproline and gelatin showed enhanced use of 

amino acids, polymers and carbohydrates, suggesting that microbial communities adapted to 

the type of available C-source [32]. The SU applied in this experiment contained glycine, 

reflecting the composition of natural sheep urine [8], which would explain the enhanced use 
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of glycine in SU-treated samples. Furthermore, SU is known to cause a release of organic 

forms of C, N and P into the soil solution [8], potentially leading to further selection. None of 

the PCs of the AWCD-transformed data accounted for a large part of the total variability, 

suggesting no dominant influence on C-source utilisation patterns but rather a number of 

different factors exerting different pressures on the microbial communities. In grasslands, 

plant density is very high, with a variety of species co-existing in close proximity which, in 

combination with differences in soil physiochemical properties, can result in a wide variety of 

local environments in which different microbial communities can develop. A high degree of 

local variability in microbiological properties has previously been identified at this site [6].  

The correlation between the first CLPP-PC and the second PLFA-PC indicates that the 

microorganisms or groups of microorganisms responsible for the PLFA pattern may have 

been more adapted to the use of amino acids and long chain aliphatics than phenolic acids. 

However, caution must be exercised as the correlation was weak. The fact that these PCs were 

not affected by SU treatment may reflect a number of factors, e.g. local plant composition, 

potentially influencing microbial community activity but unaffected by SU application. There 

was significant divergence between CLPP and PLFA profiling. CLPP indicated a significant 

effect of SU treatment on the density of active bacteria although neither total PLFA nor total 

bacterial PLFA were affected by SU treatment. CLPP patterns were also less sensitive to 

moisture content that PLFA profiles. Bossio and Scow [34] also concluded that PLFA profiles 

responded more readily to soil water content than CLPP patterns and Grayston et al. [2] 

reported differences between CLPP and PLFA profiles. CLPP profiles are biased towards 

microorganisms that grow rapidly under laboratory conditions in an aqueous, nutrient-rich 

environment and may not represent dominant populations in the inoculum [35], whereas 

PLFA profiles are likely to reflect dominant microbial types. DGGE profiles appeared to be 

more closely related to PLFA profiles than to CLPP profiles, probably for similar reasons. 
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Synthetic urine treatment caused significant changes in the microbial community 

structure detected by PLFA profiles, DGGE banding patterns and C-source utilisation. The 

data indicated a shift towards bacteria with higher concentrations of branched fatty acids and 

a higher proportion of DNA sequences migrating to the upper regions of the gel.  The shift 

observed only accounted for 10-15% of the total variability in community structure, 

suggesting that, while the effect was significant, it was limited in magnitude.  SU treatment 

also preferentially stimulated bacteria adapted to utilise rhizosphere C-sources.  The 

consequences of the changes in microbial community structure for subsequent soil function 

and plant growth were not determined but many of the changes in community structure 

observed here are consistent with the results of Ritz et al. [6], and thus support the hypothesis 

that urine addition is a significant cause of heterogeneity in upland grassland soils.  However, 

the data also show that the effect of urine was not large and that there were no overarching 

controlling factors. 
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Table 1. Influence of synthetic sheep urine application on selected properties of grassland soil. 

 pH  Moisture 

(% dry weight) 

 DOC 

(µg g
-1

) 

 NH4-N 

(µg g
-1

) 

 NO3-N 

(µg g
-1

) 

Day control urine  control urine  control urine  control urine  control urine 

0 3.3 3.4  66 67  nd
b 

51  8 88  6.5 7.1 

1 3.4 5.3  57 121  693 115  14 1390  4.9 7.9 

8 3.7 6.3  110 117  972 189  24 1527  3.6 12.0 

15 3.7 6.4  86 149  912 2285  20 1612  5.5 28.4 

29 3.6 5.1  161 176  929 1023  17 966  4.2 39.0 

s.e.d.
a 

0.5  24  322  370  9 

a
s.e.d.: standard error of the difference 

b
n.d.: not determined 
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Table 2. Significance level of urine treatment effects (residual degrees of freedom = 10), 

effects of time of sampling and treatment x time interaction (residual degrees of freedom = 

29) found for individual PLFAs determined by analysis of covariance with total PLFA as a 

covariate, where significant effects were apparent.  

Variable Treatment  Time  Treatment x Time 

 P  P  P 

i14:0 0.040  n.s.  n.s. 

cis14:19 n.s.
* 

 <0.001  n.s. 

i15:0 n.s.  0.016  n.s. 

a15:0 0.022  0.013  0.045 

i16:1 n.s.  0.023  n.s. 

trans16:111 0.028  n.s.  n.s. 

cis16:17 n.s.  0.005  n.s. 

16:0 n.s.  0.009  0.022 

i17:0 0.007  n.s.  0.013 

17:17 0.007  n.s.  n.s. 

12Me17:0 n.s.  0.033  n.s. 

18:3(6,8,13) n.s.  0.002  n.s. 

20:1 n.s.  0.020  n.s. 

*
n.s.: not significant 
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Fig 1. Relationship between the first principal component and total amount of 

microbial-specific PLFA. The number of days after water or urine application for 

control (normal type) and urine-treated (bold) samples, respectively, are indicated.  

No separation between treatment and control samples is observed. 

 

Fig 2. Mean principal component scores for control (black bars) and urine-treated (grey bars) 

samples on each sampling day in the third principal component of PLFA data (a), the first 

principal component of DGGE data (b) and the second principal component of CLPP data (c). 

Bars are standard error of the mean. 

 

Fig 3. Effects of synthetic urine on total bacterial plate counts (cfu g
-1

). Control samples are 

black bars and urine-treated samples are grey bars. Error bars are standard error of the means. 

 

Fig 4. Relationship between sample scores on the first principal component of DGGE banding 

patterns and on the third principal component of PLFA profiles. 
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Fig 1. Relationship between the first principal component and total amount of 

microbial-specific PLFA. The number of days after water or urine application for 

control (normal type) and urine-treated (bold) samples, respectively, are indicated.  

No separation between treatment and control samples is observed. 
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Fig 2. Mean principal component scores for control (black bars) and urine-treated (grey bars) 

samples on each sampling day in the third principal component of PLFA data (a), the first 

principal component of DGGE data (b) and the second principal component of CLPP data (c). 

Bars are standard error of the mean.  
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Fig 3. Effects of synthetic urine on total bacterial plate counts (cfu g
-1

). Control samples are 

black bars and urine-treated samples are grey bars. Error bars are standard error of the means. 
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Fig 4. Relationship between sample scores on the first principal component of DGGE banding 

patterns and on the third principal component of PLFA profiles. 

 

 


