T. Noda and H. Kato, Heat treatment of carbon under high pressure, Carbon, vol.3, issue.3, pp.289-97, 1965.
DOI : 10.1016/0008-6223(65)90063-1

P. Whang, F. Dachille, W. Jr, and P. , Pressure effects on the structure of carbons produced from anthracene, pp.137-184, 1974.

M. Inagaki, A. Oberlin, and S. De-fonton, Texture change in hard carbon o n h e a t t re a t men t u n d e r p re s s u re. H i g h Te mp ? H i g h P re s s 1977, pp.453-60

S. De-fonton, A. Oberlin, and M. Inagaki, Characterization by electron microscopy of carbon phases (intermediate turbostratic phase and graphite) in hard carbons when heat-treated under pressure, Journal of Materials Science, vol.13, issue.4, pp.909-926, 1980.
DOI : 10.1007/BF00552102

J. Ayache, A. Oberlin, and M. Inagaki, Mechanism of carbonization under pressure, part I: Influence of aromaticity (polyethylene and anthracene), Carbon, vol.28, issue.2-3, pp.337-51, 1990.
DOI : 10.1016/0008-6223(90)90007-L

O. Beyssac, F. Brunet, J. Petitet, B. Goffe, and J. Rouzaud, Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature, European Journal of Mineralogy, vol.15, issue.6, pp.937-51, 2003.
DOI : 10.1127/0935-1221/2003/0015-0937

R. Wentorf, The Behavior of Some Carbonaceous Materials at Very High Pressures and High Temperatures, The Journal of Physical Chemistry, vol.69, issue.9, pp.3063-3072, 1965.
DOI : 10.1021/j100893a041

E. Yakovlev, O. Voronov, and A. Rakhmanina, Diamond synthesis from hydrocarbons, Sverkhtverd Mater, vol.59, issue.4, pp.8-11, 1984.

A. Onodera, K. Suito, V. Davydov, A. Rakhmanina, V. Agafonov et al., Science and technology of high pressure Proceedings of AIRAPT- 17 Conversion of polycyclic aromatic hydrocarb o n s t o g r a p h i t e a n d d i a m o n d a t h i g h p r e s s u r e s Phase diagram of carbon and a possibility of diamond synthesis at low pressures, Russ Doklady Akademii Nauk SSSR, vol.1042279, issue.26, pp.875-80261, 1984.

P. Badziag, W. Verwoerd, W. Ellis, N. Greiner, F. Fugaciu et al., Nanometer-sized diamonds are more stable than graphite [13] Terrones H, Terrones M. The transformation of polyhedral particles into graphite onions Concentric-shell fullerenes and diamond particles: a molecular-dynamics study Coexistence of bucky diamond with nanodiamond and fullerene carbon phases, Nature J Phys Chem Solids Phys Rev B Phys Rev B, vol.3435814601568, issue.6254111574, pp.244-51789, 1990.
DOI : 10.1038/343244a0

Q. Jiang and Z. Chen, Thermodynamic phase stabilities of nanocarbon, Carbon, vol.44, issue.1, pp.79-83, 2005.
DOI : 10.1016/j.carbon.2005.07.014

D. Ugarte, V. Kuznetsov, A. Chuvilin, Y. Butenko, I. Mal-'kov et al., Curling and closure of graphitic networks under electron-beam irradiation Onion-like carbon from ultra-disperse diamond Structure and electronic properties of carbon onions, Nature Chem Phys Lett J Chem Phys, vol.35922219114, issue.6397417, pp.707-716, 1992.

D. Heer, W. Ugarte, and D. , Carbon onions produced by heat treatment of carbon soot and their relation on the 217.5 nm interstellar absorption feature, Chem Phys Lett, vol.207, pp.4-6480, 1993.

T. Riviere, J. Delaford, and J. , A new technique for fullerene onion formation, Mater Sci, vol.3022, pp.4787-92, 1995.

J. Qian, C. Pantea, J. Huang, T. Zerda, Y. Zhao et al., Graphitization of diamond powders of different sizes at high pressure?high temperature Melting of carbon at 50?300 kbar Formation process of carbine by shock compression, Carbon Phys Chem Miner Naturwissenschaften, vol.4223152478, issue.26, pp.12-13, 1987.

F. Bundy, L. Vereshchagin, O. Ryabinin, A. Semertsan, L. Lifsfits et al., Direct conversion of graphite to diamond in static pressure apparatus Direct graphite?diamond transformation at high static pressures, Science Russ Dokl Acad Nauk SSSR, vol.137206, issue.35351, pp.1057-1065, 1962.

V. Kuznetsov, B. Yuv, V. Zaikovskii, and A. Chuvilin, Carbon redistribution processes in nanocarbons, Carbon, vol.42, issue.5-6, pp.5-6, 2004.
DOI : 10.1016/j.carbon.2003.12.059