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[1] To increase our understanding of the carbon cycle, we compare regional
estimates of CO2 flux variability for 1980–1998 from atmospheric CO2 inversions
and from process-based models of the land (SLAVE and LPJ) and ocean (OPA and
MIT). Over the land, the phase and amplitude of the different estimates agree well,
especially at continental scale. Flux variations are predominantly controlled by El
Niño events, with the exception of the post-Pinatubo period of the early 1990s.
Differences between the two land models result mainly from the response of
heterotrophic respiration to precipitation and temperature. The ‘‘Lloyd and Taylor’’
formulation of LPJ [Lloyd and Taylor, 1994] agrees better with the inverse estimates.
Over the ocean, inversion and model results agree only in the equatorial Pacific
and partly in the austral ocean. In the austral ocean, an increased CO2 sink is
present in the inversion and OPA model, and results from increased stratification of
the ocean. In the northern oceans, the inversions estimate large flux variations in line
with time-series observations of the subtropical Atlantic, but not supported by the
two model estimates, thus suggesting that the CO2 variability from high-latitude
oceans needs further investigation.

Citation: Peylin, P., P. Bousquet, C. Le Quéré, S. Sitch, P. Friedlingstein, G. McKinley, N. Gruber, P. Rayner, and P. Ciais (2005),

Multiple constraints on regional CO2 flux variations over land and oceans, Global Biogeochem. Cycles, 19, GB1011,

doi:10.1029/2003GB002214.

1. Introduction

[2] Year-to-year fluctuations in the atmospheric CO2

growth rate (Figure 2a in section 3.1) are one of the clearest
signals of the global carbon cycle. Those fluctuations are of
the same magnitude as the long-term annual mean accumu-
lation in the atmosphere. They are caused mostly by the
impact of climate variability on the ocean and land carbon
reservoirs, since fossil fuel emissions increase smoothly

year to year. The existence of interannual variability (IAV)
in the carbon cycle shows that CO2 fluxes react to varying
climate patterns in a fairly coherent manner at large spatial
scales, despite strong heterogeneity at small spatial scales.
Understanding of the IAV signal is necessary to assess the
future response of the carbon cycle to climate change [Cox
et al., 2000].
[3] The IAV has been the object of numerous studies,

aiming at deciphering which of the ocean or land exchange
causes the largest fluctuation. Those studies belong either to
the so-called ‘‘top-down’’ atmospheric approach or to the
‘‘bottom-up’’ approach (predictions from biogeochemical
models or in situ observations).
[4] Top-down studies used atmospheric observations of

CO2 [Keeling et al., 1995], CO2 and d13C [Keeling et al.,
1996; Francey et al., 1995; Joos et al., 1999], and O2:N2,
13C, and CO2 [Battle et al., 2000] to apportion the global
IAV signal between land and oceans, with conflicting
results. Some of the differences, particularly those involving
d13C, can be attributed to differences in d13C data sets linked
to the difficulty in maintaining an accurate 13C calibration.
Other studies [Ciais et al., 1995; Rayner et al., 1999;
Keeling and Piper, 2001] similarly used CO2 and d13C to
estimate the IAV in carbon fluxes over broad latitude
bands. In recent years, modelers have estimated IAV in
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regional carbon fluxes using synthesis inversions based
on three-dimensional (3-D) atmospheric transport models
and on time series of gradients in atmospheric CO2 at
nearly 100 stations around the globe [Bousquet et al.,
2000; Rödenbeck et al., 2003]. Bousquet et al. [2000]
suggested through a series of sensitivity tests that the
terrestrial biosphere was the main contributor of IAV in
fluxes, both globally and regionally. Rödenbeck et al.
[2003] estimated flux IAV at the resolution of their
transport model (8� � 10�) using only CO2 data, and
reached similar conclusions, but highlight a correlation
between IAV of terrestrial fluxes and biomass burning
activity as inferred from remotely sensed fire counts
[Schimel and Baker, 2002]. The idea that biomass burn-
ing could be a major player in the IAV of fluxes also
emerged from a multiple species analysis by Langenfelds
et al. [2002].
[5] ‘‘Bottom-up’’ studies used process-based biogeo-

chemical models in climate models [Jones et al., 2001]
or forced by climate fields to quantify regional IAV of
carbon fluxes over land [Kindermann et al., 1996; Tian et
al., 1998; Knorr, 2000; Gerard et al., 1999; Botta et al.,
2002] and over the ocean [Le Quéré et al., 2003b;
McKinley et al., 2004; Winguth et al., 1994]. Although
those studies all agree in suggesting that the land IAV is
larger than the ocean IAV, they may not attribute the IAV
phenomenon to the same processes, and different models
exhibit large discrepancies in the IAV regional signal
[McGuire et al., 2001]. Furthermore, some potentially
important processes such as ecosystem disturbance (in-
cluding fire fluxes) [Zimov et al., 1999; van der Werf et
al., 2003] or the enhancement of air-sea gas exchange by
storms [Bates, 2002] are often missed in carbon models.
Bottom-up modeling of the IAV is also difficult to
validate against direct observations of the fluxes because
of the scarcity of long time series of carbon flux
measurements over land [Baldocchi et al., 2001; Goulden
et al., 1996] as well as over the ocean [Gruber et al.,
2002; Lee et al., 2002a].
[6] In addition to IAV in the climate fields used to

drive carbon cycle models, a significant IAV signal also
shows up in time series of satellite indexes of the
vegetation greenness [Myneni et al., 1997; Braswell et
al., 1997], despite specific problems of long-term satellite
data sets. There is still a knowledge gap to interpret
interannual fluctuations in the vegetation greenness in
terms of net carbon fluxes by the means of models
[Lucht et al., 2002].
[7] Among the most salient questions raised by the IAVof

carbon fluxes is its link with the El Niño–Southern Oscil-
lation (ENSO) and other modes of climate variability. El
Niño has long been observed to be synchronous with higher
than normal CO2 growth rates [Keeling et al., 1989;
Gaudry, 1993; Bacastow, 1976]. Also, the observation of
lower than normal growth rate directly after the climate
cooling induced by the Pinatubo eruption in 1991 and the
follow-up return to normal growth rates in 1994 remains
largely unexplained, and may be related to the effect of
cooler temperatures on respiration, or with a temporary
increase in the diffuse fraction of downwelling solar radi-

ation increasing canopy photosynthesis [Farquhar and
Roderick, 2003; Gu et al., 2003]. In both cases, the
underlying processes are poorly understood.
[8] The scale at which top-down and bottom-up methods

estimate the IAV is different. The two approaches do not
fully support or exclude each other, unless the atmospheric
data can be downscaled significantly. In this paper, we
compare CO2 surface flux IAV inferred from atmospheric
inversions together with independent calculations from two
terrestrial carbon models and two ocean carbon models.
The inversion work is an extended analysis of work by
Bousquet et al. [2000] that includes assessment of errors.
The comparison is performed at global and regional levels.
Here we consider ‘‘regional’’ to represent continents or
large ocean basins. We discuss reasons for agreement and
disagreement, and the limitations of the comparison, and
we analyze the processes that control the IAV in the
bottom-up models.

2. Methodology

2.1. Atmospheric Inversions: Top-Down Fluxes

[9] We use a Bayesian synthesis inverse model [Enting,
2002] to retrieve the net CO2 fluxes every month from 1980
to 1998. The method has been explained by Bousquet et al.
[2000] and is based on the work of Peylin et al. [1999].
Details can be found in these papers or in Appendix A. We
solve for the monthly land and ocean fluxes (11 and
8 regions, respectively, Figure 1) in order to minimize both
the distance between model responses and observations and
the distance between a priori fluxes and optimized fluxes,
using specific weights (errors). Sixty-eight stations are used
(see location and year of first assimilation in Figure 1).
Errors on the data are calculated monthly at each site either
from the standard deviation of the residuals from raw flask
measurements and a smooth curve (if more than four
individual/pairs of flasks are sampled during a month) when
available, otherwise from the mean standard deviation
provided by National Oceanic and Atmospheric Adminis-
tration (NOAA) [2000]. A minimum error value of 0.5 ppm
is applied to account for other sources of uncertainties such
as instrumental errors, possible calibration offsets between
networks, etc. Land fluxes are assigned prior monthly
values (balanced annually and with no IAV) and prior
geographic patterns within each region from the SIB-2
global biosphere model [Denning et al., 1996]. Ocean
fluxes are assigned prior values and patterns (no IAV) from
a global synthesis of air-sea-flux measurements [Takahashi
et al., 1997]. Prior errors on net fluxes are set to ±1/

ffiffiffiffiffi

12
p

GtC month�1 (1 GtC annually), identically over land and
ocean regions. Such loosely defined errors help to regularize
the solution but do not nudge the solution of the inversion to
the prior estimates. Model responses are calculated with the
TM2 transport model [Heimann, 1995].
[10] As all causes of uncertainties cannot be explicitly

accounted for in such inversion, we carried out a series
(seven) of inversions as in work by Bousquet et al. [2000]
(see Appendix A) to investigate the sensitivity of our
results. We varied the transport model (TM3 instead of
TM2), the meteorological fields (1993 instead of 1990), the
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number of regions (30 instead of 19), the errors on obser-
vations (multiplied by 2), the number of observations (20
stations covering 1980–1998 instead of an increasing
number with time), the constraint on global oceanic sink
(removed), and the type of observations (using deseasonal-
ized CO2 data).
[11] As seen in Figure 1, most of the stations appeared

gradually between the early 1980s to mid-1990s (especially
in the Northern Hemisphere). Our choice of increasing the
number of stations in the network (as opposed to Rödenbeck
et al. [2003]) follows the objective of utilizing all available
data, given the underdetermined nature of our inverse
problem. However, it is a potential source of bias, and
one should always try to verify that any given flux anomaly
does not directly corresponds to the addition or removal of
any particular sites (see section 4.1).
[12] As a further sensitivity experiment, we include an

independent inversion estimate of fluxes over the same
period, labeled ‘‘Rayner-inv’’ on the figures. This monthly
inversion using 26 land/ocean regions is an update of
Rayner et al. [1999]. The differences from that work can
be summarized as follows: (1) The d13C record has been
revised using a new calibration scheme, (2) the input CO2,
d13C, and O2/N2 records have been extended forward in
time up to 1998, (3) the atmospheric response functions

have been recalculated with a different transport model,
MATCH/MACCM2 [Gurney et al., 2002], and (4) a term
has been added to the d13C budget to treat the dilution of
d13C anomalies by the gross fluxes (see Appendix A).
‘‘Rayner-inv’’ is different from the above ensemble of
inversions in almost every significant respect (transport
model, data, the use of d13C), and therefore the two studies
provide a reasonable consistency check on the top-down
estimates.

2.2. Land Biosphere Models: LPJ and SLAVE

[13] We use two process-based biosphere models in this
study: the Lund-Potsdam-Jena Dynamic Global Vegetation
Model (LPJ-DGVM) [Sitch et al., 2003; Smith et al.,
2001], which combines vegetation dynamics and biogeo-
chemistry, and the SLAVE terrestrial biogeochemistry
model [Friedlingstein et al., 1995]. Both models simulate
land-atmosphere carbon exchange, driven by seasonal and
interannual variations in climate. However, formulation
(and number) of processes primarily responsible for this
exchange differ among models. The major characteristics
and differences with respect to carbon exchange are
summarized in Table 1 with further details given in
Appendix B1. Overall, SLAVE can be considered a less
complex biospheric model than LPJ. However, in terms of

Figure 1. Map of the different regions used in the inversions for the standard case: 11 land regions and
11 oceanic regions. The location and acronyms of the stations used in this study are also shown together
with the year when the monitoring started. Asterisks denote sites that ended before the end of the
inversion (ZEP* 96; MBC* 96; WES* 98; CSJ* 91; OPW* 89; SCH* 98; CMO* 96; P01* 94; P02* 95;
GOZ* 97; C06* 97; AVI* 89; C05* 97; C04* 97; C03* 97; C02* 97; C01* 97; HBA* 97).
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interannual carbon fluxes, the models will mainly differ
because of their heterotrophic respiration formulation.

2.3. Ocean Carbon Models: OPA and MIT

[14] Air-sea CO2 fluxes are modeled with two offline
biogeochemical models, coupled, respectively, to the MIT
and OPA ocean general circulation model [McKinley et al.,
2003; Le Quéré et al., 2003a]. Model carbon fluxes differ
not only by the physical fields but also by the biogeochem-
ical processes, as summarized in Table 2 and detailed in
Appendix B2.

3. Results

[15] We discuss the monthly varying flux anomalies (after
removing the long-term seasonal cycle) and extend some
previous analysis of Bousquet et al. [2000] using the
bottom-up estimates.

3.1. Global Fluxes

[16] Over the 1980–1998 period, the annual accumula-
tion of CO2 in the atmosphere has shown variations of
±1.5 ppm (Figure 2a), reflecting surface flux anomalies.
The inverse estimates for global land and ocean fluxes are
compared with predictions of SLAVE and LPJ land
models and OPA and MIT OCE models and with the
inverse results of [Rayner et al., 1999] (updated version).
The gray zone represents the envelope of our ensemble
(seven) of inversions.
[17] One should first mention that the spread between all

the inversions for the flux IAV is relatively small compared

to the spread obtained for the mean annual fluxes (not
shown). Indeed, the mean global land uptake for the 1980–
1998 period varies within a factor of 3 between the seven
inversions (0.7 to 2.0 GtC yr�1). This corroborates the result
discussed initially by Bousquet et al. [2000] and further by
Rödenbeck et al. [2003], that we have more confidence in
the IAVof surface fluxes retrieved by the inversions than on
net fluxes. IAV indeed relies on temporal changes of the
concentration differences between stations, which can be
larger than the mean concentration differences (e.g., be-
tween Atlantic and Pacific stations the difference varies
between ±0.5 ppm compared to a mean difference close to
0.2 ppm over the 1990s; see Bousquet et al. [2000,
Figure 4]). A common feature between the ‘‘top-down’’
and ‘‘bottom-up’’ approaches is that they all produce
more flux IAV (peak to peak amplitude) over land (around
±2 GtC yr�1) than over oceans (around ±0.7 GtC yr�1). For
the bottom-up approaches, this is quite remarkable as the
land and ocean biogeochemical models do not have explicit
links. For the top-down approaches, note that we use equal
prior weights but that the land plus ocean anomalies (minus
fossil) must match globally the anomalous growth rate.
[18] The phase of modeled and inverted land fluxes is

closely correlated with growth rate anomalies (r = 0.87 with
our mean inversion), especially during El Niño events
(1982–1983, 1987–1988, and 1997–1998) when land eco-
systems tend to accumulate less or even release carbon
(Figure 2b). At this global scale, the two inverse approaches
are highly correlated (r = 0.73) but the peak to peak
amplitude of the ‘‘Rayner-inv’’ estimate is slightly smaller

Table 1. Major Characteristics of the Two Land-Atmosphere Carbon Exchange Models, LPJ and SLAVE

LPJ SLAVE

PFTsa 10 10
NPP GPP and autotrophic respiration light use efficiency
f() APAR, gs, Ci, Ca, T, Cleaf,. . . APAR, LAI, SRAD, T,. . .

Farquhar et al. [1980] Field et al. [1995]
Nitrogen no no
Heterotrophic Respiration first-order kinetics first-order kinetics

Pools 4 3
Temperature control ‘‘Arrhenius’’ [Lloyd and Taylor, 1994] ‘‘Q10’’
Water control yes yes [Parton et al., 1993]

Land use no no
Natural biomass burning yes no
Nutrients feedbacks no on CO2 fertilization only

Friedlingstein et al. [1995]
Light diffuse versus direct no no

aPlant functional types.

Table 2. Major Characteristics of the Two Ocean-Atmosphere Carbon Exchange Models, OPA and MIT

MIT OPA

Grid size latitude 0.3�–1�; longitude 1� latitude 0.5�–1.5�; longitude 2�
Forcing data NCEP/COADS NCEP/ECMWF/ERS
Restoring of T and S none below the mixed layer poleward of 15�
Restoring of tracers below 1000 m none
Biogeochemistry particle export NPZD
Alkalinity function of salinity function of salinity
Air-sea gas exchange Wanninkhof [1992] Wanninkhof [1992]
Mean air-sea flux, GtC/yr 1.8 1.5
Flux STD, GtC/yr 0.28 0.24
Dominant IAV region equatorial Pacific equatorial Pacific
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than that of our mean inversion. Given the large differences
between the two inversion setups, such an agreement gives us
some confidence in the inverse results at this scale. There is
also a strikingly good agreement between the inversions
and the land models. The amplitude of the signals are
rather similar, with standard deviations of 1.1 and 1.5 and
1.0 GtC yr�1, for SLAVE, LPJ, and our mean inversion,
respectively. As for the phase, LPJ roughly follows
the inversions, whereas SLAVE model presents on average
a 6-month negative lag (larger for the 1982–1983 and 1987–
1988 El Niño events). The correlation coefficients (r) after
correction of the lags are 0.7 and 0.5, respectively (those
values remain quite small because large intra-annual fluctua-
tions, still present in the inverse estimates, decrease the
value of r). The main difference between top-down and
bottom-up approaches is found in the early 1990s after the

Pinatubo eruption when very low growth rates occurred. We
will come back to this period in section 4.1. One should also
notice the strong agreement between all approaches for
1997–1998 major El Niño (especially in the phase of the
IAVs), a period with a much larger number of atmospheric
stations compared to the 1980s.
[19] For ocean fluxes (Figure 2c), all flux estimates

present smaller IAVs than their land counterpart with
standard deviations on the order of 0.5 GtC yr�1 for the
two inversions and 0.25 GtC yr�1 for the bottom-up
approaches (OPA and MIT). The largest peak to peak
amplitude of the anomalies is found in our set of inversions.
These different estimates also do not agree in phase for most
of the 20-year period with a correlation coefficient lower
than 0.3. Differences between ‘‘Rayner-inv’’ inversion, our
inversions and the two bottom-up approaches are of the

Figure 2. (a) Mean anomalous gross rate obtained from the data at all stations of Figure 1. (b, c) Global
land and global ocean flux anomalies over 1980–1998 (in GtC per year) as obtained from our ensemble
of inversions (gray zone defines the range of all inversions, and dark line denotes the mean), from Rayner
et al. [1999], from the SLAVE land surface model [Friedlingstein et al., 1995], from the LPJ land surface
model [Sitch et al., 2003], from the OPA-HAMOCC3 ocean model [Le Quéré et al., 2000], and from the
MIT ocean model [McKinley et al., 2003]. See color version of this figure at back of this issue.
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same order of magnitude, the latter two having the smallest
IAV. A closer look at our ensemble of inversions (gray zone)
shows that the inversion for which we have multiplied
the errors on the observations by a factor of 2 presents the
smallest ocean flux IAV with only a slight reduction of the
land flux IAV, a result in closer agreement with the other
approaches. Reducing the error on the data directly
increases the ocean IAV, as a better fit for nearly two thirds
of the stations is required (‘‘marine network’’). The optimal
error level is, however, difficult to assess, and one might
argue that current ‘‘marine network’’ could bias the partition
of the flux anomalies toward the ocean fluxes. Moreover,
the use of relatively large ocean regions (11) is a potential
source of errors (‘‘aggregation error’’ [Kaminski et al.,
2001]) that could also bias the partition of the flux IAV
between land and ocean [McKinley et al., 2003].

3.2. Latitudinal Fluxes

[20] We now discuss the flux anomalies by latitudinal
bands; three for the land: northern extratropics (>20�N),

tropics, and southern extratropics (<20�S); and four for the
ocean: with the southern extratropics split into a 50�S–20�S
and an austral region south of 50�S (Figure 3). At this scale,
we will not present ‘‘Rayner-inv’’ inversion because (1)
their estimates correspond to different regions than ours
(north-south and east-west boundaries differ), which pre-
vents a rigorous comparison, and (2) they choose to
assimilate only the sites that were available during the entire
period (12), which can be seen as a limitation for an indepth
discussion of the results at the regional level. As a first
remark when downscaling global results, one must consider
that the number of atmospheric stations was under 25 before
1985. This does not allow much confidence in the regional
results for the early 1980s. We will thus focus on the period
1985–1998. The mean flux IAV over this period (standard
deviation) is reported in Table 3 for all regions.
[21] After 1985, land flux variability is dominated by

the exchanges with tropical ecosystems (±1.5 GtC yr�1)
and the Northern Hemisphere ecosystem (±0.7 GtC yr�1)
(Figure 3). More precisely, the 1987–1988 El Niño induces

Figure 3. Regional land and ocean flux anomalies over 1980–1998 (in GtC per year) for the Northern
extratropical land and ocean (>20�N), the tropical land and ocean, the southern extratropical land
(<20�S), the temperate Southern Ocean (50�S–20�S), and the austral ocean. Gray zone and color lines
correspond to the different estimates as in Figure 2. See color version of this figure at back of this issue.
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a positive flux anomaly in the tropics not visible in the
extratropics, while for the 1997–1998 event the response is
more spread between the different latitude bands. Note that
the 12-month running mean applied to remove the seasonal
cycle extends the duration of the flux changes (i.e., the flux
anomaly in the tropics increases in early 1987 whereas the
actual El Niño begins only at the end of 1987). During the
1990–1995 period, the northern extratropical land carbon
exchange slightly dominates in the inverse results and
presents an enhanced uptake after the Pinatubo eruption in
1991 (1 GtC yr�1 of increase) and a recovering period in
1994.
[22] The phase and the amplitude of the top-down and

bottom-up approaches agree surprisingly well, especially
with the LPJ model. The standard deviations of the flux IAV
(Table 3) are rather similar for the tropics but slightly
different for the northern extratropics, SLAVE model having
the smallest variability and LPJ the largest (0.34 and 0.82,
respectively, compared to 0.55 for the inversions). The
correlation coefficient between the mean inversion and
LPJ model is on the order of 0.6 both for the tropical and
the northern extratropical ecosystems. With the SLAVE
model it only reaches such value for the tropics and only
if we account for a 5-month negative lag of that model.
Overall the convergence between the inverse approaches
and the LPJ biogeochemical model for the tropics and

northern extratropics can be viewed as an encouraging
feature that will be discussed in section 4. For the southern
extratropical land flux anomaly, the agreement between the
two approaches starts in the early 1990s. However, the LPJ
flux IAV presents an anomalous uptake between 1994 and
1997 up to 3 GtC yr�1 (linked to biomass burning), a
decrease much smaller for the inverse or the SLAVE model
estimates.
[23] For the ocean, the fluxes estimated from the inver-

sions show interannual variations (±0.5 GtC yr�1) much
smaller than for the land, the largest variations occurring for
the northern extratropical basins while the fluctuations for
the austral ocean basin (south of 50�S) are much smaller
(Figure 3 and Table 3). Correlations between the inverse
estimates and the SOI index are relatively small for such
latitudinal breakdown (even with a possible lag of ±12
months) and the largest anticorrelation, �0.43, is for the
northern oceans. If we compare top-down and bottom-up
approaches, the agreement is less convincing than for the
land, and only the austral ocean, the most homogeneous
region, shows some similarities. The inversions and the
OPA model produce a similar increase of the austral ocean
carbon sink (same trend on the order of �0.5 GtC between
1985 and 1995) with a relatively good agreement for the
phase of the IAV (correlation of 0.6) and comparable ampli-
tude (standard deviation of 0.19 and 0.12, respectively). Note

Table 3. Mean Internal Errors (Estimated by the Inverse Procedure) on the Interannual Flux Variability (IAV), Mean External Errors

(From the Ensemble of Inversion) on the IAV, Maximum Internal Correlations Between Any Given Region and the Other Regions of the

Table (Value and, in Parentheses, the Index of the Region), and Mean Amplitude of the IAVa

Region Errors Internal Correlations IAV

Name Index Internal External First Second Inverse LPJ/SLAVE OPA/MIT

NORTHERN HEMISPHERE LAND 1 0.56 0.38 �0.6(2) �0.6(19) 0.55 0.82/0.34
NORTHERN HEMISPHERE OCE 2 0.38 0.24 �0.6(1) �0.3(11) 0.32 0.05/0.07
TROPICAL LAND 3 0.98 0.45 �0.3(5) �0.3(1) 0.71 0.87/0.91
TROPICAL OCE 4 0.27 0.15 0.4(6) 0.3(27) 0.25 0.17/0.18
Southern Hemisphere land 5 0.71 0.32 �0.3(3) �0.3(22) 0.44 0.79/0.46
SOUTHERN HEMISPHERE OCE 6 0.28 0.10 0.5(25) 0.4(4) 0.19 0.10/0.10
Tundra 7 0.22 0.10 �0.5(13) �0.3(11) 0.16 0.04/0.01
NORTH AMERICA 8 0.59 0.36 �0.5(11) �0.4(19) 0.57 0.55/0.24
Boreal North America 9 0.48 0.26 �0.4(21) �0.4(19) 0.45 0.14/0.04
Temperate North America 10 0.47 0.25 �0.4(9) �0.2(20) 0.33 0.50/0.24
Eurasia 11 0.57 0.41 �0.5(8) �0.4(9) 0.37 0.48/0.23
Boreal Europe 12 0.48 0.17 �0.3(13) �0.2(8) 0.16 0.13/0.07
Boreal Asia 13 0.50 0.23 �0.5(7) �0.3(15) 0.28 0.15/0.09
Temperate Europe 14 0.38 0.26 �0.2(13) �0.2(15) 0.33 0.27/0.12
Temperate Asia 15 0.36 0.26 �0.3(13) �0.2(14) 0.34 0.28/0.10
PACIFIC >20�N 16 0.24 0.15 �0.4(1) �0.3(11) 0.27 0.05/0.05
Temperate North Pacific 17 0.18 0.11 �0.2(11) �0.1(1) 0.20 0.04/0.03
North Pacific nord 18 0.17 0.09 �0.3(1) �0.2(13) 0.11 0.03/0.03
ATLANTIC >20�N 19 0.28 0.15 �0.6(1) �0.4(8) 0.14 0.03/0.03
Temperate North Atlantic 20 0.24 0.14 �0.3(1) �0.3(8) 0.10 0.02/0.02
North North Atlantic 21 0.18 0.07 �0.5(1) �0.4(9) 0.10 0.01/0.02
Tropical America 22 0.81 0.29 �0.4(25) �0.3(5) 0.44 0.42/0.52
Tropical Africa 23 0.76 0.35 �0.2(5) �0.2(24) 0.43 0.39/0.30
Tropical Asia 24 0.53 0.40 �0.3(1) �0.2(23) 0.60 0.20/0.26
Tropical Pacific 25 0.11 0.10 0.5(6) 0.4(27) 0.14 0.16/0.19
Tropical Atlantic plus Indian oceans 26 0.23 0.12 0.3(6) 0.2(27) 0.28 0.06/0.03
20�S–50�S ocean 27 0.28 0.09 0.4(25) 0.3(4) 0.26 0.06/0.05
Austral ocean 28 0.19 0.08 �0.3(27) 0.1(25) 0.19 0.12/0.06

aSee text for description of the internal and external errors. All-capital words in first column denote a group of individual regions for which we solve the
fluxes. Mean amplitude of the IAV denotes standard deviation of the monthly flux IAV averaged across all seven sensitivity tests. These numbers
correspond to the restricted period 1985–1998, and to all individual regions of the inversion or grouping of regions (names in capital). Errors and IAVs are
expressed in GtC yr�1.
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that theMITmodel shows no such trend, as we had to remove
it from the initial fluxes (to addressmodel drift). In the tropics,
all approaches produce similar amplitude of the flux IAV, but
the bottom-up and top-down are not in phase and the
inversion does not show as clear a correlation with El Niño
events as do the ocean models. However, the agreement is
much better when considering the equatorial Pacific Ocean
alone. For nontropical oceans, inversions producemuchmore
variability than both the ocean biogeochemical models. Such
controversial results will be discussed in section 4.

3.3. Uncertainties in the Inverse Estimates

[24] The synthesis inversion allows estimation of not only
the fluxes but their associated error variance-covariance
matrix P (‘‘internal error’’). These errors only account for
the random errors due to the assumed random uncertainties in
the observations. From P, we derived an internal error on the
flux IAVonly (P0; see Appendix C). We also use the spread of
the seven sensitivity tests that we performed to partly estimate
systematic errors from the standard deviation of the seven flux
anomalies (‘‘external error’’). Both errors are reported in
Table 3 (mean value), and Figure 4a shows the temporal
evolution of the internal error for a few regions.
[25] On average, internal errors are smaller for the ocean

than for the land regions (marine network), and largest
for tropical land (least constrained region). They slightly

decrease in time as the number of stations increases
(Figure 4a, left axes). Note the large drop for tropical Asia
with the appearance of the South China Sea Cruses in 1992
and conversely with their disappearance in 1998. The
external errors are smaller by nearly a factor of 2 than the
internal errors, except for the tropical Pacific Ocean (this
region has the largest number of sites (ship measurements),
which in turn produces a small internal error). This might
indicate that the random error in the flux estimate dominates
in comparison to the potential systematic errors (i.e., trans-
port model biases) or that the seven sensitivity tests only
explore a part of the possible systematic errors.
[26] The robustness of the flux IAVs should be discussed

in the light of these uncertainties. At the latitudinal scale,
the ratios between the mean amplitude of the IAV and the
internal/external errors are close to one/two (Table 3). At
the regional scale, these ratios can be significantly lower
for particular regions (boreal Europe and Asia), although
they remain stable for most oceanic regions and tropical
Asia. The large internal errors suggest that we still need
more data to statistically assess the IAV signal, and the
favorable ratio with the external error suggests that the IAV
signal is relatively robust and less subject to systematic
errors. This latter result, detailed in Appendix C, supports
the conjecture that IAV is better constrained than long-term
net fluxes.

Figure 4. (a) Time evolution of the internal errors (i.e., returned by the inversion) of the flux IAV in
GtC yr�1 (see text for definition). Mean values from the ensemble of inversion are represented for
Northern Hemisphere land and tropical land, as well as for two specific regions, tropical Asia and
boreal North America. The dotted and dashed lines represent, shown on the right axis, the number of
stations north of 30�N and in the tropics, respectively, as a function of time. (b) Examples of the
time evolution of internal correlations (i.e., returned by the inversion) between different regions;
temperate with boreal North American; boreal North America with North Atlantic; and boreal
European land with North Atlantic.
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[27] Following this idea, one should also stress the
potential source of misinterpretation from using only 1
year of wind as explained by Rödenbeck et al. [2003]. We
partly accounted for such bias, with an additional test
using proper winds for each year in a forward mode and
inverting for residuals linked to transport IAV (see Ap-
pendix C). As a main result, flux IAV is only modified at
the regional scale: significantly for the amplitude and
slightly for the phase.
[28] Finally, we computed the correlation coefficients

between the internal errors. These correlations are on
average quite low (absolute value <0.6; see Table 3) and
lower than those for the net flux errors reported by Peylin et
al. [2002]. This is especially true for tropical land and
tropical oceans where flux anomalies seem to be more
separable than mean fluxes. The time evolution of these
correlations, illustrated in Figure 4b, is sometime counter
intuitive and may increase as more stations appear (see
Appendix C). Overall, one should use some caution to

interpret flux IAVs at the regional level where the uncer-
tainties remain large.

4. Discussion

[29] In this section, we assess the biogeochemical factors
that control the IAV, with a detailed analysis of the bottom-
up models.

4.1. Land Fluxes

[30] Global Net Ecosystem Production (NEP) variability
is mainly driven by precipitation for SLAVE model and a
combination of precipitation and temperature for LPJ. These
global features, however, combine the variability of net
primary production (NPP) and heterotrophic respiration
(Rh) (including biomass burning for LPJ) which will be
discussed individually for two large regions, the tropics
and Southern Hemisphere, and the northern extratropics.
Additional simulations of the biogeochemical models which

Figure 5. (a) Mean temperature and precipitation anomalies over the tropics for the 1980–1998 period.
(b, c, d) Net ecosystem production (NEP), net primary production (NPP), and heterotrophic respiration
(RH), respectively, expressed as flux anomalies for LPJ and SLAVE land models. The NEP derived from
the inversions (mean value) is overplotted.
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explicitly quantify the relative role of the major climatolog-
ical forcing (temperature versus precipitation) are included
to support the analysis.
4.1.1. Tropical and Southern Hemisphere Fluxes
[31] Precipitation controls NEP variability in the tropics

and Southern Hemisphere in both land models. In the
tropics, IAV has similar amplitude in both models
(Figure 5), with positive anomalies of NEP (larger flux
toward the atmosphere) during the El Niño years (1982–
1983, 1987–1988, 1997–1998) consistent with the inver-
sion results. In the Southern Hemisphere, the large shift
from anomalous source to sink in LPJ between 1995 and
1997 (Figure 3) is due to a decrease in the biomass burning
source in response to a large precipitation anomaly.
[32] For these regions, both LPJ and SLAVE show a large

positive correlation between NPP and precipitation (0.73
and 0.62, respectively, but with a 4-month positive lag of
NPP; see Figure 5). Also, models show a significant
negative correlation of NPP IAV with temperature, albeit
small relative to that with precipitation. The 1997 and 1998
El Niño years are the exception where the reduction in NPP
is equally explained by a reduction in precipitation and by a
large positive temperature anomaly. Overall, both models
simulate a reduction in tropical NPP during El Niño years
on the order of 1–1.5 GtC.
[33] In the tropics during El Niño years, SLAVE simulates

an increase in Rh of 1–1.5 GtC whereas LPJ produces a
smaller increase of 1 GtC (Figure 5d). The two models
show quite different responses of Rh to the climate forcing.
SLAVE has a strong anticorrelation (�0.68) with precipita-
tion anomalies whereas LPJ is insensitive (positive correla-
tion of 0.18). As opposed to LPJ, SLAVE includes an
inhibition of the decomposition rate at high moisture levels
(see equations (B8) in Appendix B1). In the tropics, where
moisture levels are high on average, negative anomalies of
precipitation could thus lead to an increase in Rh. We
performed an additional simulation with SLAVE where
the inhibition was removed and found a much better
agreement on tropical NEP between the two models (not
shown). Regarding Rh sensitivity to temperature, the two
models are very similar in the tropics and the Southern
Hemisphere.
[34] In addition to NPP and Rh, LPJ simulates natural

biomass burning, which tends to increase modeled NEP
IAV (except post-Pinatubo years 1992 and 1993), especially
during the middle to late 1990s. Biomass burning is anti-
correlated with precipitation, reinforcing the land NPP
driven response to ENSO. Modeled global IAV in natural
biomass burning agrees with Langenfelds et al. [2002] and
Duncan et al. [2003] in predicting maxima and minima
emissions in years 1994/1995 and 1995/1996, respectively.
Extremely high emissions in 1997/1998, largely associated
with fires in southeast Asia [van der Werf et al., 2003], are
not captured by LPJ. However, these emissions are in part
due to peat fires [Page et al., 2002] and the increased
susceptibility of tropical forests to fire due to logging
practice [Siegert et al., 2001], both of which are not
explicitly modeled in LPJ.
[35] Biomass burning anomalies act in the same direction

as Rh anomalies, amplifying the respiration IAV in the

tropics and Southern Hemisphere, with an exception for
years between 1994 and 1998 in the Southern Hemisphere.
This period is characterized by large fluctuations in precip-
itation with minimum in 1995 followed by a maximum in
1997. While Rh is relatively unresponsive, biomass burning
varies by over 1 GtC during this period, and contributes to
the large net biosphere anormal release in 1995 in the
Southern Hemisphere, followed by uptake in 1997 as
simulated by LPJ (Figure 3).
[36] Overall, the differences between SLAVE and LPJ

heterotrophic respirations explain most of their NEP differ-
ences. The phase of the NEP anomalies, especially during
the 1982–1983 and 1987–1988 El Niño years, shows a
positive lag in SLAVE compared to LPJ of close to
8 months. Although the inversion estimates are more in
line with LPJ results, neither Rh formulation can be strongly
recommended at this stage.
4.1.2. Northern Hemisphere Flux
[37] Although smaller than in the tropics, the flux IAV in

northern extratropics is substantial and different among
biospheric models. IAV is driven by temperature in LPJ
but not in SLAVE. Models differ primarily in their respira-
tion response to climate variability, their NPP responses
being comparable (Figure 6). In SLAVE, Rh is almost
insensitive to temperature variability (correlation 0.23)
whereas LPJ shows a strong positive correlation (0.86).
Formulations relating Rh to temperature differ among
models with SLAVE adopting a ‘‘Q10’’ approach, and
LPJ the ‘‘Lloyd and Taylor’’ (modified Arrhenius) equation
(equation (B3) in Appendix B1). At low temperatures the
‘‘Lloyd and Taylor’’ formulation is more sensitive to a unit
change in temperature, and visa versa at high temperatures.
For example, a unit increase in temperature around a mean
of 5�C results in an increasing respiration rate of 7% and
12% for SLAVE and LPJ, respectively, with an approxi-
mately equal response around a mean temperature of 25�C.
This explains the differential response between the two
models with respect to Rh in temperate and boreal regions.
[38] During the ‘‘post-Pinatubo’’ period, the mean atmo-

spheric CO2 growth rate was relatively low during 1991–
1993 and recovered in 1994–1995. The observed cooling of
�0.6�C between late 1991 and mid-1992 (Figure 6a) drove
a decrease of Rh in LPJ only. When the Rh of the SLAVE
model is computed using the ‘‘Lloyd and Taylor’’ instead of
its standard ‘‘Q10’’ formulation, Rh decreased in 1992 in
phase with LPJ but with only half its amplitude (simulation
results not shown). Between 1988 and 1992, both models
show increasing biospheric uptake due to the positive
response of NPP to an increase in precipitation, in agree-
ment with the recent findings of Nemani et al. [2002] for the
United States. However, LPJ simulates a maximum of NPP
in 1992 before a reduction in 1993, whereas SLAVE only
simulates the reduction. The combination of the larger Rh
reduction in LPJ compared to SLAVE and the peak of NPP
in LPJ explains the LPJ net biospheric negative anomaly
following the Pinatubo eruption (Figure 6).
[39] A different explanation has been proposed which

explains the post-Pinatubo anomalous sink by the effect
of enhanced diffuse radiation on canopy photosynthesis
after the Pinatubo eruption [Farquhar and Roderick,
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2003; Gu et al., 2003]. To assess the validity of this
hypothesis using atmospheric observations, one would need
information on the IAVof the gross fluxes based on satellite
observations or atmospheric tracers such as the 18O/16O
ratio in CO2 [Ciais et al., 1997].
[40] As discussed by Bousquet et al. [2000], the inversion

supports the large negative anomaly in 1992–1993 over the
Northern Hemisphere estimated by LPJ (Figure 6). How-
ever, the inversion essentially locates this anomaly in North
America (Figure 7), whereas LPJ simulates also a smaller
but significant uptake anomaly in Eurasia.
[41] The inversion result attribute an enhanced North

America sink to an increase of the mean atmospheric
concentration difference between Atlantic and Pacific sites
[Bousquet et al., 2000, Figure 4] in 1992–1993. To inves-
tigate the robustness of this anomaly, we carried out several
additional sensitivity inversions. First, trying to account for
interannual variations of the transport (Appendix A) leads to
a larger sink in 1992–1994 (curve ‘‘Mean_inv + wind’’;
Figure 7). Second, to test if such anomaly is an artifact
linked to the appearance of new sites in 1992–1994, we
performed two inversions: one where we stopped assimi-

lating new sites after 1990 (‘‘stat before 90’’), and one
where we used extrapolated data from GLOBALVIEW for
all 68 sites over the 1980–1998 period (‘‘stat. interpol.’’).
Although still present, the negative anomaly in the ‘‘stat
before 90’’ inversion is smaller by a factor of 2, which
confirms the importance of having new sites like MHD,
ICE, and ITN in 1992–1993 to fully separate flux anoma-
lies between the Northern Hemisphere regions. The ‘‘stat.
interpol.’’ inversion with an anomaly comparable to the
mean inversion anomaly confirms that it is unlikely to be an
artifact linked to the relative position (i.e., mean concentra-
tion) of those sites. Overall, the large North American
anomalous sink in 1992–1993 estimated by the inversions
seems to be robust to the use of available observations, and
is supported by LPJ’s results.

4.2. Ocean Fluxes

[42] IAV in air-sea fluxes is driven by changes in the
partial pressure of surface water CO2 (pCO2) and in gas
exchange. Gas exchange is mainly a function of wind speed.
The pCO2 combines the impact of temperature on carbon
solubility, and of physical transport and marine biological

Figure 6. Same as Figure 5, but for the northern extratropics.
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export on dissolved inorganic carbon (DIC). We discuss
these processes for the equatorial Pacific, Austral, and
Northern oceans.
4.2.1. Equatorial Pacific
[43] As a result of repeated equatorial Pacific-wide sur-

veys of sea-surface pCO2, the impact of El Niño/Southern
Oscillation (ENSO, captured by the Southern Oscillation
Index, SOI) on the air-sea CO2 fluxes is well established
[Feely et al., 1999]. The normal outgassing of CO2 in this
region is reduced by up to +0.5 GtC yr�1 during El Niño
events (1982–1983, 1986–1987, and 1997–1998) and
conversely during La Niña conditions (1984–1985,
1988–1989) (see Figure 8).
[44] The inversion and ocean models are in excellent

agreement with the observed variations in terms of magni-
tude, but there remain some phase differences particularly
associated with the OPA model. At the peak of the 1986–
1987 El Niño, for example, the OPA model lags the
inversion results by nearly 1 year [see also Bousquet et
al., 2000]. Replacing the climatological winds with inter-
annually varying winds (‘‘mean + wind’’ curve, Figure 8) in
the atmospheric inversion only reconciles some of the phase
differences in the early 1980s. The phasing and the magni-
tude of the IAVs simulated by MIT model tend to be more
similar to the inversion results and are generally in good
agreement with the observations.
[45] In both models, ENSO alters the air-sea CO2 flux

by changing the slope of the thermocline and upwelling,
thereby changing the vertical supply of DIC to the
surface, in agreement with observations [Archer et al.,
1996]. This upwelling effect more than overrides the
counteracting effect of the changes in SST and biological
export, both of which would tend to increase the CO2

outgassing during El Niño events, the former because of

the higher than normal SSTs and the latter because of
reduced nutrient supply. McKinley et al. [2004] also find
that wind speed variability and change in the longitudinal
displacement of the western warm pool contributes to the
flux IAV.
[46] Differences between the MIT model and the OPA

model in the equatorial Pacific are caused by differences in
the mean state of the ocean and in the parameterization of
marine export production. The MIT model has a surface to
depth gradient of DIC that is underestimated by �25%
compared to the observations of Goyet et al. [1999], which
may reduce variability, while the OPA model captures this
gradient quite well. The OPA model shows variations in
surface chlorophyll that are overestimated by 1.5 compared
to satellite observations, while the simplified export param-
eterization of the MIT model tends to damp export flux
variability. Further, the variability of export production in
the OPA model increases over the course of the run, which
increasingly damps the OPA CO2 flux variability signal
with time.
[47] Despite these differences, the agreement between the

ocean models, the atmospheric inversions, and the in situ
observations for the equatorial Pacific is remarkable. There
is less agreement between the bottom-up and top-down
approaches in the other tropical ocean regions, so that the
comparison for the tropical oceans as a whole is worse
(Figure 3).
4.2.2. Austral Ocean
[48] In the austral ocean, both the inversion and the OPA

model show a constant increase in air-sea CO2 flux since
1984 (Figure 3). Results from the MIT model are not
compared here as long-term trends were removed (see
section 2.3). No direct observations of flux IAVs are
available for this region.

Figure 7. Flux IAVestimated for North America (three individual regions of Figure 1 grouped together)
for different inverse setup and for bottom-up models: mean inversion (black), inversion where we stop
assimilating new stations after 1989 (dark blue), inversion with all 67 sites extrapolated over the entire
period (1980–1998) from Globalview (orange), and mean inversion plus some corrections computed
from the interannual wind experiment (i.e., inversion of the concentration differences from a direct
simulation with and without interannual winds; see section 3.3; light blue). See color version of this
figure at back of this issue.
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[49] In OPA, changes in DIC driven by changes in
physical transport dominate the variations in CO2 flux
(Figure 9; see Le Quéré et al. [2000] for a description of
the equations). OPA simulates interannual variations in the
mean mixed layer depth of up to ±8 m. When the mixed
layer depth deepens, waters rich in DIC are entrained into
the surface and CO2 outgasses to the atmosphere. The
magnitude of this effect is similar in amplitude and in phase
with the contribution of DIC to the total sea-air CO2 flux
(Figure 9). In comparison, the trend in the ocean sink
caused by the increase in atmospheric CO2 is estimated at
�0.3 PgC per decade [Le Quéré et al., 2003b], about half of
the trend produced by the OPA model and by the inversion
in the Southern Ocean only. Thus this trend appears to be
caused by changes in ocean stratification.
[50] The year-to-year variations in mixing depth are

mostly caused by local variations of ±10 to ±60 m in the
Pacific sector of the austral ocean, associated with the
passage of the Antarctic Circumpolar Wave (ACW).
The ACW is a perturbation of SST, ice extent and surface
wind that was observed to propagate around the austral
ocean [White and Peterson, 1996]. The perturbations affect
ocean biogeochemistry in a way that has been modeled [Le
Quéré et al., 2000] but never evaluated due to the lack of
time series observations in this region of the world. Our
study suggests that atmospheric observations may be useful
for this purpose. However, in the current configuration of
the atmospheric inversion, the austral ocean appears as one
region, and thus it is not possible to separate east-west
variations to clearly identify the role of the ACW.
[51] Climate models consistently predict a major stratifi-

cation of the ocean surface with global warming [Sarmiento
et al., 1998]. Our comparison suggests that the natural CO2

sink in this region would increase by 0.05 to 0.1 GtC yr�1

for every meter of stratification of the austral ocean.
However, stratification also stops anthropogenic CO2 from

penetrating to the intermediate and deep waters. Over the
1980–1998 period, the impact of stratification on CO2

fluxes is dominated by natural processes. Over a longer
time period, however, models suggest that the effect of
stratification on anthropogenic CO2 dominates and that the
CO2 sink in the austral ocean is reduced [Sarmiento et al.,
1998].
4.2.3. North Atlantic and North Pacific
[52] Over the entire North Atlantic and North Pacific

combined, the inversion suggests variations of CO2 fluxes
up to ±0.5 GtC yr�1, whereas the ocean models find
variations of only up to ±0.2 GtC yr�1 (Figure 3). Over
the North Atlantic, the inversion suggests interannual var-
iability in the fluxes of more than ±1 mol/m2/yr (Figure 10),
which, assuming little change in the gas exchange coeffi-
cient, would require interannual anomalies in the ocean
pCO2 of more than ±15 ppm. Such variability should be
visible in oceanic pCO2 measurements.
[53] Long time-series observations of oceanic pCO2 exist

at the subtropical North Atlantic (Bermuda Atlantic Time-
series Study, BATS) and Pacific (Hawaii Ocean Time-series,
HOT) [Bates et al., 2002; Gruber et al., 2002; Karl and
Lukas, 1996; Winn et al., 1998]. At these stations, IAV in
the oceanic pCO2 varies by 10 ppm only, and is mainly
controlled by anomalies in SSTs with some compensatory
effects by anticorrelated changes in DIC [Bates et al., 2002;
Gruber et al., 2002]. However, there exists a significant
inverse correlation between SST anomalies and wind speed
at both sites, so that colder than normal years with lower
than normal oceanic pCO2 tend to have higher wind speeds
and hence higher gas transfer coefficients leading to inter-
annual flux variability of up to ±0.8 mol/m2/yr at both sites
[Gruber et al., 2002]. A surprising finding is that the
Bermuda-based interannual flux variability estimates (if
projected over the whole North Atlantic) not only agree
with the inversion-based estimates in terms of magnitude,

Figure 8. Flux anomalies for the equatorial Pacific Ocean from our ensemble of inversions (gray zone
for the full range and dark line for the mean), from the mean inversion plus some corrections computed
from the interannual wind experiment (i.e., inversion of the concentration differences from a direct
simulation with and without interannual winds; see section 3.3), from the OPA and MIT ocean models,
and from a compilation of oceanic data [Feely et al., 1999]. The SOI index is overplotted (right axis). See
color version of this figure at back of this issue.
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but also in phase [Gruber et al., 2002]. This may indicate
that the ocean models substantially underestimate interan-
nual variability in the Northern Hemisphere extratropics.
[54] However, ocean models compare relatively well with

observations at BATS and HOT particularly with regard to
phasing (Figure 11). To be accurate at the basin scale,
models must correctly simulate the processes that control
CO2 flux IAV at higher latitudes. The observation that the
seasonal cycle of pCO2 switches from being controlled by
SST to being controlled by surface ocean DIC at about 40�
latitude [Takahashi et al., 2002] suggest that the same may
be true of interannual variations. If this is the case, then
variations in lateral and vertical mixing and biological
export production are primarily responsible for air-sea
CO2 flux variations at high northern latitudes, similar to
what we found for the Southern Ocean. These relationships
are found to hold in the North Atlantic for the MIT model,
but not in OPA. In the North Pacific, SST and DIC
variations compete in driving the interannual variability of
pCO2 in both models [Le Quéré et al., 2003b; McKinley et
al., 2004].
[55] Nevertheless, there are two reasons to suggest that

the ocean models may underestimate air-sea flux IAV in the

extratropical Northern Hemisphere. First, the ocean models
may underestimate physical variability of the oceans. We
know that the variability in the ocean dynamics of the OPA
model is underestimated at high latitudes [Le Quéré et al.,
2000], and the MIT model underestimates sea surface height
variability relatively equally at all latitudes. Still, the sim-
ulated mixed layer depth variability compares well to
observed variations at BATS and HOT in both models.
Second, the dynamic, temperature and biological effects on
ocean CO2 tend to cancel each other at high latitudes. As
each of these individual effects can be on the order of 20–
40 ppm, the resulting modeled flux becomes the difference
between three large numbers, which is difficult to establish
with accuracy.
[56] Alternatively, the atmospheric inversion may be

overestimating ocean variability in the North Atlantic and
North Pacific. This can be due to the inability of the
atmospheric network to fully separate land and ocean fluxes
with the result of some land variability leaking into the
ocean regions. The relative large anticorrelation between the
northern Atlantic region and the Northern Hemisphere
land (�0.5, Table 3) illustrates such weakness of the
current inversions. A thorough analysis of existing pCO2

Figure 9. (top) Sea-air CO2 flux in the Southern Ocean (PgC/yr) computed using the OPA ocean model.
(middle) Individual contributions of dissolved inorganic (DIC) and sea surface temperature (SST) to the
total sea-air CO2 flux shown in the top panel. The differences between the sum of the DIC and SST
contribution and the curve of the top panel are caused by the contribution of alkalinity and by interannual
variations in gas exchange. (bottom) Changes in the mixing depth (right axis) and the associated
entrainment of total carbon at the surface by vertical mixing. The amount of entrained carbon is computed
by estimating the impact of mixing intermediate waters with rich DIC on surface ocean pCO2, and
multiplying by an average gas exchange.
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Figure 10. Flux anomalies for the North Atlantic Ocean (north of 20�N) from our ensemble of
inversions (gray zone for the full range and dark line for the mean) and from the OPA and MIT ocean
models.

Figure 11. Estimates of air-sea CO2 flux anomalies for (a) the oceanic region near Bermuda (32�N;
64�W) and (b) the oceanic region near Hawaii (22�N; 158�W). The ‘‘observed’’ flux anomalies for
Bermuda were estimated by Gruber et al. [2002] for station ‘‘S’’/BATS, and those for Hawaii were
estimated by Brix et al. [2004] for Station ALOHA. Both estimates are derived from observed surface
ocean pCO2 variations and estimated variations in the gas exchange coefficient. For the MIT model, a
3� � 3� region centered around the observing site was used.
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measurements in the North Atlantic and Pacific oceans
would provide a useful indication on the variability in these
regions, and help resolve the discrepancies between the top-
down and bottom-up approaches.

5. Summary and Conclusions

[57] We present an intensive comparison of the interan-
nual variations of carbon flux estimated either from a series
of inversions (top-down approaches) or from two land (LPJ
and SLAVE) or two ocean (OPA and MIT) carbon cycle
models (bottom-up approaches). The inversions based on a
time-dependent approach use a long record of atmospheric
observations covering the 1980–1998 period and two
different transport models. Among the large number of
global land biosphere models [Cramer et al., 1999, 2001],
LPJ can be considered as a sophisticated model of the
energy, carbon, and water balance, while SLAVE is a more
simplified global carbon model. For the ocean, OPA and
MIT models are state-of-the-art models that computed air-
sea flux IAV over the period 1980–1998. The major
findings of this comparison are as follows:
[58] 1. In agreement with previous studies, atmospheric

CO2 variability is dominated by land fluxes. The phase of
the CO2 flux anomalies is predominantly controlled by the
El Niño/La Niña cycles (relative land source and sink of
CO2 to the atmosphere, respectively), with the exception of
the post-Pinatubo period in the early 1990s (large land
sink).
[59] 2. The inverse estimates agree well with the results of

the two land biosphere models (LPJ and SLAVE) at the
latitudinal and even regional scales, in terms of both phase
and amplitude of the major anomalies.
[60] 3. Both land models agree well for the response of

NPP to climate variability.
[61] 4. Major differences between the two land models

arise for the response of Rh to precipitation and tempera-
ture. The respiration rates for high moisture levels, typical
of the tropics, are poorly represented in the models and
could significantly change the net flux anomalies. The
sensitivity of Rh to low temperature, typical of the northern
extratropics, is critical. The ‘‘Lloyd and Taylor’’ formula-
tion of the LPJ model produces much larger variations than
that of the SLAVE model (Q10), and leads to net flux
anomalies more in line with the atmospheric inversions.
[62] 5. The inverse estimates agree well with the results of

the two ocean carbon models (OPA and MIT) in the
equatorial Pacific and partly in the Southern Ocean, but
results are very different at high latitudes of the Northern
Hemisphere.
[63] 6. Both models find that the equatorial Pacific drives

the global air-sea CO2 flux variability. This variability is
driven by changes in physical processes associated with
ENSO, specifically thermocline slope, upwelling, warm
pool displacement, and wind speed.
[64] 7. In the Southern Ocean, the inversions and the OPA

model produce a similar increase of �0.5 PgC/yr in carbon
uptake over the 1980–1998 period. In the OPA model, this
increase results mainly from the stratification of the upper
ocean which isolates carbon-rich deep waters.

[65] 8. In the northern oceans, the inversions produce
variability of ±0.5 PgC/yr, much larger than the ±0.2 PgC/yr
produced by both models. However, both models reproduce
relatively well the observed variations of the time-series
stations of BATS and HOT, located at the midlatitudes of
the Atlantic and Pacific oceans. Thus the disagreement
between the inversions and the models largely comes from
the high-latitude oceans.
[66] 9. As noted by Bousquet et al. [2000], CO2 flux IAVs

are more safely assessed by the inversions than the mean net
sources and sinks. Both the internal uncertainties on the
IAVs (i.e., random uncertainties associated with data or
transport model) and the estimated external uncertainties
(i.e., systematic errors from the use of a given transport
model) are indeed significantly lower than the mean ampli-
tude of the signal (IAVs) when considering the continental
scale.
[67] This study illustrates the benefit of comparing top-

down estimates to predictions of process-based carbon
models. Rather than the usual direct comparison of the
inversions with climatic variables, our approach helps
unravel and validate the most critical processes that control
land/ocean carbon fluxes. Although the inverse method
could be significantly refined (accounting for better prior
information, solving for a much larger number of regions to
avoid ‘‘aggregation errors,’’ using more than two transport
models), we believe that the limitations of the current
inverse approaches arise mainly from lack of data. In the
near future, the potential use of satellite data [Chedin et al.,
2003] might be a critical next step. More directly, the use of
continuous measurements (more than 20 sites globally) and
the information contained in the ‘‘synoptic events’’ will
certainly help to resolve more precisely specific sources and
sinks of CO2, provided that we will be able to use accurate
mesoscale-type models [Law et al., 2003]. Finally, one
should keep in mind that the bottom-up approaches still
miss processes which could lead to some misinterpretation.

Appendix A: Atmospheric Inverse Set-Ups

[68] We designed a Bayesian synthesis inversion based on
work by Peylin et al. [1999] and Bousquet et al. [2000],
solving for monthly fluxes over a ‘‘large region.’’ We
indeed divided the land surface into 11 regions and
the ocean surface into 8 regions for the standard set-up
(Figure 1) with regional fluxes being assigned a priori
monthly values, monthly uncertainties, and spatial patterns.
We calculated the atmospheric CO2 distribution at all
stations caused by atmospheric transport acting on a pulsed
source of 1 GtC emitted at a constant rate by each region
and for each month. The simulations are performed with a
3-D global transport model (TM2 [Heimann, 1995]), and
we archive the resulting CO2 concentration field for the
following 2 years (response functions). The obtained land,
ocean, and fossil response functions are then linearly
combined, the weight corresponding to the monthly flux
magnitude we solve for. Note that fossil emissions are set to
fixed monthly values based on interannual fossil fuel
emissions statistics [see Bousquet et al., 2000] and that
land fluxes comprise fluxes associated with land use and
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cover changes and other biospheric sources and sinks. We
minimize a cost function which is the sum of both the
distance between model responses and observations and the
distance between a priori flux estimates and optimized flux
estimates, using specific weights (errors).
[69] Additional constraints to limit unrealistic month-to-

month fluctuations of the source magnitudes, i.e., variations
greater than 200% of the a priori prescribed variations
(SIB2 and Takahashi models for land and ocean, respec-
tively), are also employed [Peylin et al., 1999]. We also
add a constraint on the global oceanic uptake of 2.0 ±
1.2 GtC yr�1 (for each year of the whole period), based on
O2/N2 data [Battle et al., 2000]. Finally, we do not model
explicitly year-to-year changes in the atmospheric transport
over 1980–1998. Analyzed ECMWF winds for year 1990
are recycled to perform the response function calculations.
As this hypothesis may lead to bias in monthly flux
estimates [Rödenbeck et al., 2003], we performed a sensi-
tivity study to evaluate the impact of interannual meteorol-
ogy on our results (see section 3.3).
[70] We carried out a series of inversions to investigate

the sensitivity of our inverse results to particular compo-
nents of the inversion (seven major as per Bousquet et al.
[2000]):
[71] 1. We used the TM3 model instead of TM2 to test the

impact of using a different transport parameterization,
which was reported to be a main source of uncertainties
when inverting mean fluxes [Gurney et al., 2002]. TM3 is
based on the same scheme as TM2, but it has a higher
vertical and horizontal resolution (72 � 48 � 19 hybrid
levels compared to 48 � 25 � 9 sigma levels) which
produces a CO2 distribution over continents very different
from TM2. In particular, TM3 generates large positive
rectification gradients between land and oceans in the
Northern Hemisphere, unlike TM2.
[72] 2. We used recycled 1993 meteorological fields

instead of 1990 fields to test the impact of using a single
year of the atmospheric transport.
[73] 3. We carried out a test inversion with 16 continental

and 14 ocean regions to partly evaluate the impact of spatial
discretization of prior sources.
[74] 4. We multiplied all errors on the data by an arbitrary

factor of 2, as we may underestimate some observational
errors (representativeness of stations in the model, data
selection, etc.).
[75] 5. We inverted only the 20 sites covering the full

1980–1998 period to study the effect of the appearance of
new data in the assimilation scheme.
[76] 6. We removed the additional constraint on the global

ocean uptake.
[77] 7. We inverted deseasonalized data at each site

instead of monthly seasonal values to test the impact of
the seasonal cycle in the results.
[78] We also include in this paper the results of an

independent inversion ‘‘Rayner-inv’’ that is different from
the above ensemble of inversions in almost every significant
respect with different response functions, a different trans-
port model and different data, most notably the use of the
long d13C record from Cape Grim. This inversion is an
update of Rayner et al. [1999]. The treatment of d13C is

aimed at using this tracer to constrain interannual variability.
Therefore initial values of the disequilibrium and its linear
trend are retrieved from the inversion to prevent them
polluting net flux estimates. Interannual variations are
ascribed, to first order, to net fluxes. However, an anoma-
lous d13C arising from a net flux anomaly will decay
naturally as it is diluted by exchange with underlying
reservoirs. This dilution by the gross fluxes is now param-
eterized in the d13C response functions with decay constants
from Trudinger et al. [1999]. Note, however, that this
inversion does not treat climatic effects on globally aver-
aged fractionation [Scholze et al., 2003].

Appendix B: Land and Ocean Biogeochemical
Models

B1. Land Carbon Models: LPJ and SLAVE

B1.1. LPJ Model
[79] The Lund-Potsdam-Jena Dynamic Global Vegetation

Model (LPJ-DGVM [Sitch et al., 2003; Smith et al., 2001]
is a process-based biosphere model combining terrestrial
vegetation dynamics and biogeochemistry. Modeled pro-
cesses primarily responsible for the land-atmosphere carbon
exchange include plant production, autotrophic respiration,
natural biomass burning, and soil and litter decomposition.
[80] Primary production is calculated using the Farquhar

photosynthesis model [Farquhar et al., 1980], as general-
ized by Collatz et al. [1991]. Leaf nitrogen and Rubisco
activity are assumed to vary both seasonally and with
canopy position such as to maximize net assimilation. Net
primary production (NPP) is calculated as a function of
absorbed photosynthetically active radiation (APAR), itself
a function of vegetation cover and phenology, the canopy
conductance (gs), air temperature (T), the atmospheric CO2

concentration, the ratio of the intercellular to ambient partial
pressures of CO2, and leaf biomass (Cleaf).
[81] Two litter (above and below ground) and two soil

pools (fast and slow) are defined. Heterotrophic respiration
(Rh) is modeled as a function of litter and soil substrate,
tissue-specific base turnover times, temperature, and soil
moisture by applying first-order kinetics,

dC=dt � Cinput ¼ �kC; ðB1Þ

k ¼ 1=tao10ð Þ � g Tð Þ � f Wð Þ=12; ðB2Þ

g Tð Þ ¼ exp 308:56 1=56:02ð Þ � 1= T þ 46:02ð Þð Þð Þ½ �; ðB3Þ

f Wð Þ ¼ 0:25þ 0:75�W ; ðB4Þ

where C represents the carbon content in a given substrate
pool, Cinput is the carbon input from tissue turnover and
litter decomposition into the litter and soils pools,
respectively, and tao10 is the turnover time of the litter
(2.86 years), fast soil (33.3 years), and slow soil pools
(1000 years) at 10�C [Meentemeyer, 1978]. The temperature
dependence g(T) follows the modified Arrhenius relation-
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ship [Lloyd and Taylor, 1994], with decomposition of the
belowground litter and soil pools dependent on soil
temperature, and aboveground litter on air temperature.
An empirical soil moisture relationship from Foley [1995] is
adopted, f(W), where W(m) is the average moisture status in
the upper soil layer in month m.
[82] Natural biomass burning is modeled as the combina-

tion of fire occurrence and its effects [Thonicke et al., 2001].
Fire occurrence depends on fuel load and litter moisture,
both of which are influenced by climate and vegetation. The
length of the fire season is translated into an area burnt, and
vegetation mortality within that area (therefore the biomass
burning flux) depends on PFT-specific fire resistances. For
this study, annual natural biomass burning fluxes are
weighted by the seasonality of Rh to produce seasonal
fluxes, which are then added to the Rh fluxes.
B1.2. SLAVE Model
[83] The SLAVE model is a terrestrial carbon model that

simulates for 10 vegetation types the net primary produc-
tivity, the allocation of carbon within the plant, and the
growth and decay of living biomass. It also simulates litter
and soil carbon cycle [Friedlingstein et al., 1995]. Processes
primarily responsible for the land-atmosphere carbon ex-
change, driven by seasonal and interannual variations in
climate, include NPP and organic matter respiration.
[84] NPP follows a light use efficiency formulation [Field

et al., 1995]; it is a function of absorbed photosynthetically
active radiation (APAR), itself a function of vegetation
cover and phenology (LAI) and incoming solar radiation
(SRAD). This function is then modulated by high- and low-
temperature stress (T) and moisture stress deduced from the
actual to potential evapotranspiration (AET/PET).
[85] The heterotrophic respiration formulation, similarly

to the one used in LPJ, follows first-order kinetics. The
main difference with LPJ lies in the formulations used for
the temperature and water control on the decomposition
rate. The temperature dependence follows a Q10 formula-
tion: g(T) = Q10

(T�30)/10 where T is the monthly air temper-
ature, and Q10 has the value of 2 for all ecosystems. The
water dependence follows the CENTURY models [Parton
et al., 1993]

f Wð Þ ¼ 0:25 if W < 0:25; ðB5Þ

f Wð Þ ¼ W if 0:25 < W < 1; ðB6Þ

f Wð Þ ¼ 2�W if 1 < W < 1:75; ðB7Þ

f Wð Þ ¼ 0:25 if W > 1:75; ðB8Þ

where W is the soil water content.

B2. Ocean Carbon Models: OPA and MIT

B2.1. OPA Model
[86] OPA is an ocean general circulation model (OGCM).

In this study, it is coupled to an ocean biogeochemistrymodel.
The OGCM has 30 vertical levels, a spatial resolution of 2� in
longitude, and a latitudinal resolution that varies from 0.5� in

the tropics to 1.5� at high latitudes. It computes vertical
mixing explicitly over the entire water column based on a
1.5-order turbulent closure scheme [Gaspar et al., 1990].
Temperature and salinity are restored toward the climatolog-
ical observations in the interior of the ocean, below the mixed
layer, away from ocean-land boundaries, with a restoring
timescale of 1 year in the Southern Ocean, and 1 month
elsewhere. This restoring dampens long-term variations in
ocean physics, but does not affect year-to-year variations
associated with changes in mixing depth. The model was
forced by a combination of daily to weekly wind stresses and
fluxes from satellite and reanalyzed data from 1979 to 1999 as
described by Le Quéré et al. [2000].
[87] This model reproduces most of the variations in

ocean dynamics associated with El-Niño events in the
equatorial Pacific but underestimates variability in ocean
dynamics at high latitudes. The biogeochemistry part of the
model includes plankton dynamics and air-sea CO2 flux
[Aumont et al., 2003]. It reproduces partly the local vari-
ability in observed surface pCO2 in the northern subtropics
of the Atlantic [Bates, 2002] and Pacific [Karl and Lukas,
1996] oceans [Le Quéré et al., 2000].
B2.2. MIT Model
[88] Air-sea CO2 fluxes are modeled with an offline

biogeochemical model based on the physical fields of the
MIT ocean general circulation model [Marshall et al.,
1997b, 1997a] that was configured at the Jet Propulsion
Laboratory [Lee et al., 2002b]. The ocean general circula-
tion model has 47 vertical levels and a spatial resolution of
1� in longitude and latitudinal resolution varies from 0.3� in
the tropics to 1� at high latitudes. For the period 1980–
1998, the model is forced with 12-hour variability of
reanalyzed wind stress, heat flux, and freshwater flux fields.
Comparisons to climatology and time series indicate that the
model captures observed mean mixed layer depths and their
variability quite well. Comparisons to TOPEX/Poseidon
satellite altimetry indicate that the model reproduces all
the major features of upper ocean sea surface height
variability, but on the global average, only captures 35%
of the magnitude of this variability. This finding is consis-
tent with the findings of Stammer et al. [1996], who
considered the Parallel Ocean Climate Model at 1/4� reso-
lution. Ten-day average output of the physical model forces
the biogeochemical model.
[89] The biogeochemical model uses a particle export

parameterization with spatial variability to broadly represent
the heterogeneity of global export. Temporal variability of
surface DIC concentrations compares well to time series
observations in the subtropical North Atlantic [Bates et al.,
2002] and North Pacific [Karl and Lukas, 1996]. The
determination of air-sea CO2 exchange and other details
are described by McKinley et al. [2003, 2004]. Air-sea CO2

flux results shown here for 1980–1998 are detrended to
remove the effects of background drift in the model.

Appendix C: Uncertainties in the Inverse
Estimates

[90] The inversion returns an error variance-covariance
matrix P that is referred to as the ‘‘internal error’’ as in work
by Peylin et al. [2002]. Note that it also corresponds to the
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‘‘within model uncertainty’’ in work by Gurney et al.
[2002]. However, P refers to the fluxes and not their IAV
which are the flux minus the long-term mean. To derive an
internal error that strictly applies on the flux IAV only (P0),
we have to performed the usual computation, P0 = MPMT,
where M is a matrix that describes the linear combinations
to obtain flux anomalies from the initial flux estimates. Such
computation describes for a linear transformation the statis-
tical projection of a variance-covariance matrix. The result-
ing uncertainties on the flux IAV (P0) will be lower than the
uncertainties on the initial fluxes (P). Finally, we computed
the so-called ‘‘external error’’ from the spread of the seven
sensitivity tests that we performed. These errors will partly
account for systematic errors such as biases in transport
model (‘‘between model error’’ in work by Gurney et al.).
[91] The change in time of the internal errors directly

reflects the size and the distribution of the network. The
amplitude of the error reduction is not only associated with
the number of new sites assimilated, but it critically depends
on their position (given the current network). For instance,
over the tropics, the addition of 12 new sites between 1985
and 1990 or of five new South China Sea sites in 1992
produces a similar reduction of internal error for tropical
land (Figure 4a). Notice also the increase of the internal
error in 1998 for tropical and Northern Hemisphere terres-
trial IAV as a few stations were stopped or not available.
Given the current level of internal error, it is important to
increase or at least maintain the size of the present network.
As for external errors (smaller than the internal errors; see
Table 3), we should note that we only use two different
transport models, recycling 1990 or 1993 winds and one
spatial distribution of the fluxes within each region to
explore the possible systematic errors. All these results
point to the need for increasing the size, the accuracy, and
the frequency of the present network.
[92] The internal and external errors are not independent

[Peylin et al., 2002] and one should discuss the robustness
of the flux IAVs in light of these two uncertainties. The
greater the IAV signal is compared to these two errors, the
more robust the inverted year-to-year flux variations are.
The fact that the IAV signal is similar to or smaller than
internal error suggests that statistically we still need more
data to assess the year-to-year flux variations at the con-
ventional confidence level of 65%. Secondly, the favorable
ratio with the external error suggests that if we trust the
main components of our sets of inversions (transport
models, spatial patterns, winds, etc.), the IAV signal is then
relatively robust, a result that differs from the results of
Peylin et al. [2002] for the mean carbon fluxes.
[93] To investigate the potential source of uncertainty

from using only 1 year of wind, we ran forward the TM3
transport model with the optimized fluxes (from the inver-
sion using TM3) over the 1979–1998 period, using either
recycling 1990 winds or the proper winds for each year
(ECMWF analyses). We then computed at each site the
concentration differences resulting from the interannuality
of the transport and further inverted these differences with
our inverse set up. Although not strictly equivalent to an
inversion with interannual response functions (using the
proper winds each year), the residual fluxes obtained can be

added to the standard inverse fluxes as corrections due to
interannual variations in transport. These corrections do not
modify the general picture discussed at the latitudinal or
continental scales.
[94] Finally, as for the internal error correlations, negative/

positive correlations imply that the inversion cannot fully
separate the two regions involved but can only solve for the
sum/difference between the two. For example, the highest
anticorrelations occur between Northern Hemisphere total
land and total ocean (�0.6, Figure 4b). Intuitively, as more
stations appear with time and fill some gaps in the network
(Figure 1), correlations between regions should decrease.
Although this is true for most regions (i.e., anticorrelation
between boreal Europe and North Atlantic north goes from
�0.4 in 1985 to�0.2 in 1998), few cases show the opposite.
Boreal NorthAmerica becomesmore anticorrelatedwith both
the northern part of North Atlantic (from�0.2 in 85 to�0.45
in 95) and temperate North America (not shown) as some
stations are added in the early 1990s (BME, BMW, MHT,
ICE, ITN). Adding sites always reduces the internal error, but
could increase anticorrelations between two regions if their
contributions at these sites are similar and rather significant.
In our case, the maximum of the response functions from
boreal North America at Mace Head is not negligible and
comparable for a few months to the North Atlantic response.
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partly funded this work and contributed to the computing resources.
G. A. M. thanks NASA for the Earth System Science Fellowship
(NGT5-30189). C. Le Quere and P. Bousquet thank the EU project NOCES
(EVK2-CT-2001-00134) for financial support.

References
Archer, D., T. Takahashi, S. Sutherland, J. Goddard, D. Chipman,
K. Rodgers, and H. Ogura (1996), Daily, seasonal and interannual
variability of sea-surface carbon and nutrient concentration in the
equatorial Pacific Ocean, Deep Sea Res., Part II, 30, 779–808.

Aumont, O., E. Maier-Reimer, S. Blain, and P. Monfray (2003), An eco-
system model of the global ocean including Fe, Si, P colimitations,
Global Biogeochemical Cycles , 17 (2) , 1060, doi :10.1029/
2001GB001745.

Bacastow, R. B. (1976), Modulation of atmospheric carbon dioxide by the
southern oscillation, Nature, 261, 116–118.

Baldocchi, D., E. Falge, and K. Wilson (2001), A spectral analysis of bio-
sphere-atmosphere trace gas flux densities and meteorological variables
across hour to multi-year time scales, Agric. For. Meteorol., 107, 1–27.

Bates, N. R. (2002), Interannual variability in the global uptake of CO2,
Geophys. Res. Lett., 29(5), 1059, doi:10.1029/2001GL013571.

Bates, N., A. C. Pequignet, R. J. Johnson, and N. Gruber (2002), A variable
sink for atmospheric CO2 in subtropical mode water of the North Atlantic
Ocean, Nature, 420, 489–493.

Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway,
and R. J. Francey (2000), Global carbon sinks and their variability in-
ferred from atmospheric O2 and d13C, Science, 287, 2467–2469.

Botta, A., N. Ramankutty, and J. Foley (2002), Long-term variations of
climate and carbon fluxes over the Amazon basin, Geophys. Res. Lett.,
29(9), 1319, doi:10.1029/2001GL013607.

Bousquet, P., P. Peylin, P. Ciais, P. Friedlingstein, C. Lequere, and P. Tans
(2000), Interannual CO2 sources and sinks as deduced by inversion of
atmospheric CO2 data, Science, 290, 1342–1346.

Braswell, B. H., D. S. Schimel, E. Linder, and B. Moore (1997), The
response of global terrestrial ecosystems to interannual temperature varia-
bility, Science, 278, 870–872.

Brix, H., N. Gruber, and C. D. Keeling (2004), Interannual variability of the
upper ocean carbon cycle at station ALOHA near Hawaii, Global Bio-
geochem. Cycles, 18, GB4019, doi:10.1029/2004GB002245.

Chedin, A., A. Hollingsworth, N. A. Scott, R. Saunders, M. Matricardi,
C. Clerbaux, J. Etcheto, and R. Armante (2003), The feasiblility of

GB1011 PEYLIN ET AL.: REGIONAL CO2 FLUX VARIATIONS

19 of 21

GB1011



monitoring CO2 from high-resolution infrared sounders, J. Geophys.
Res., 108(D2), 4064, doi:10.1029/2001JD001443.

Ciais, P., et al. (1995), Partitioning of ocean and land uptake of CO2 as
inferred by d13C measurements from the NOAA climate monitoring and
diagnostics laboratory global air sampling network, J. Geophys. Res.,
100, 5051–5070.

Ciais, P., et al. (1997), A three-dimensional synthesis study of d18O in
atmospheric CO2: 2. Simulations with the TM2 transport model, J. Geo-
phys. Res., 102, 5873–5883.

Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological
and environmental regulation of stomatal conductance, photosynthesis
and transpiration: A model that includes a laminar boundary layer, Agric.
For. Meteorol., 54, 107–136.

Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell (2000),
Acceleration of global warming due to carbon-cycle feedbacks in a
coupled climate model, Nature, 408, 184–187.

Cramer, W., D. W. Kicklighter, A. Bondeau, B. Moore, G. Churkina,
B. Nemry, A. Ruimy, A. L. Schloss, and the Participants of the Potsdam
NPP Model Intercomparison (1999), Comparing global models of terres-
trial net primary productivity (NPP): Overview and key results, Global
Change Biol., 5(Suppl. 1), 1–15.

Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure
and function to CO2 and climate change: Results from six dynamic global
vegetation models, Global Change Biol., 7, 357–373.

Denning, A. S., G. J. Collatz, C. Zhang, D. A. Randall, J. A. Berry, P. J.
Sellers, G. D. Colello, and D. A. Dazlich (1996), Simulations of terres-
trial carbon metabolism and atmospheric CO2 in a general circulation
model: 1. Surface carbon fluxes, Tellus, Ser. B, 48, 521–542.

Duncan, B. N., R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan
(2003), Interannual and seasonal variability of biomass burning emissions
constrained by satellite observations, J. Geophys. Res., 108(D2), 4100,
doi:10.1029/2002JD002378.

Enting, I. G. (2002), Inverse Problems in Atmospheric Constituent Trans-
port, 392 pp., Cambridge Univ. Press, New York.

Farquhar, G. D., and M. L. Roderick (2003), Pinatubo, diffuse light, and the
carbon cycle, Science, 299, 1997–1998.

Farquhar, G., S. Von Caemmener, and J. Berry (1980), A biochemical
model of photosynthesis CO2 fixation in leaves of C3 species, Planta,
149, 78–90.

Feely, R. A., R. Waninkhof, T. Takahashi, and P. Tans (1999), Influence of
El Nino on the equatorial Pacific contribution to atmospheric CO2 accu-
mulation, Nature, 398, 597–601.

Field, C. B., J. T. Randerson, and C. M. Malmström (1995), Global net
primary production: Combining ecology and remote sensing, Remote
Sens. Environ., 51, 74–88.

Foley, J. A. (1995), An equilibrium model of the terrestrial carbon budget,
Tellus, Ser. B, 47, 310–319.

Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and
M. Trolier (1995), Changes in oceanic and terrestrial carbon uptake since
1982, Nature, 373, 326–330.

Friedlingstein, P., I. Y. Fung, E. A. Holland, J. G. John, G. P. Brasseur, D. J.
Erickson, and D. S. Schimel (1995), On the contribution of the biospheric
CO2 fertilization to the missing sink, Global Biogeochem. Cycles, 9,
541–556.

Gaspar, P., Y. Gregoris, and J. M. Lefevre (1990), A simple eddy kinetic
energy model for simulations of the oceanic vertical mixing: Tests at
station Papa and Long-Term Upper Ocean Study Site site, J. Geophys.
Res., 95, 16,179–16,193.

Gaudry, A. (1993), Report of the 7th WMO meeting of experts on carbon
dioxide concentration and isotopic measurement techniques, technical
report, World Meteorol. Org., Geneva.

Gerard, J., B. Nemry, L. Francois, and P. Warnant (1999), The interannual
change of atmospheric CO2: Contribution of subtropical ecosystems,
Geophys. Res. Lett., 26, 243–246.

Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy
(1996), Exchange of carbon dioxide by a deciduous forest: Response to
interannual climate variability, Science, 271, 1576–1578.

Goyet, C., C. Coatanoan, G. Eischeid, T. Amaoka, K. Okuda, R. Healy,
and S. Tsunogai (1999), Spatial variation of total CO2 and total alka-
linity in the northern Indian Ocean: A novel approach for the quanti-
fication of anthropogenic CO2 in seawater, J. Mar. Res., 57(1), 135–
163.

Gruber, N., N. Bates, and C. Keeling (2002), Interannual variability in the
North Atlantic Ocean carbon sink, Science, 298, 2374–2378.

Gu, L., D. Baldocchi, S. C. Wofsy, J. W. Munger, J. Michalsky, S. P.
Urbanski, and T. A. Boden (2003), Response of a deciduous forest to
the Mount Pinatubo eruption: Enhanced photosynthesis, Science, 299,
2035–2038.

Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2

sources and sinks using atmospheric transport models, Nature, 415,
626–630.

Heimann, M. (1995), The global atmospheric tracer model TM2: Model
description and user manual, Tech. Rep. 10, Max-Planck-Inst. fur
Meteorol., Hamburg, Germany.

Jones, C. D., M. Collins, P. M. Cox, and S. A. Spall (2001), The carbon
cycle response to ENSO: A coupled climate-carbon cycle model study,
J. Clim., 14, 4113–4129.

Joos, F., R. Meyer, M. Bruno, and M. Leuenberger (1999), The variability
in the carbon sinks as reconstructed for the last 1000 years, Geophys. Res.
Lett., 26, 1437–1440.

Kaminski, T., P. J. Rayner, M. Heimann, and I. G. Enting (2001), On
aggregation errors in atmospheric transport inversions, J. Geophys.
Res., 106, 4703–4715.

Karl, D. M., and R. Lukas (1996), The Hawaii Ocean Time-series (HOT)
program: Background, rationale and field implementation, Deep Sea
Res., Part II, 43, 129–156.

Keeling, C. D., and S. C. Piper (2001), Interannual variations of exchanges
of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans
from 1978 to 2000, in Critical Overview SIO, pp. 00–24, Scripps Inst. of
Oceanogr., La Jolla, Calif.

Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf,
M. Heimann, W. G. Mook, and H. A. Roeloffzen (1989), A three-
dimensional model of atmospheric CO2 transport based on observed
winds: 1. Analysis of observational data, in Aspects of Climate Varia-
bility in the Pacific and the Western Americas, Geophys. Monogr. Ser.,
vol. 55, edited by D. H. Peterson, pp. 165–236, AGU, Washington,
D. C.

Keeling, C. D., T. Whorf, M. Wahlen, and J. van der Plicht (1995), Inter-
annual extremes in the rate of rise of atmospheric carbon dioxide since
1980, Nature, 375, 666–670.

Keeling, R. F., S. C. Piper, and M. Heimann (1996), Global and hemi-
spheric CO2 sinks deduced from changes in atmospheric O2 concentra-
tion, Nature, 381, 218–221.

Kindermann, J., G. Würth, G. H. Kohlmaier, and F.-W. Badeck (1996),
Interannual variation of carbon exchange fluxes in terrestrial ecosystems,
Global Biogeochem. Cycles, 10, 737–755.

Knorr, W. (2000), Annual and interannual CO2 exchanges of the terrestrial
biosphere: Process-based simulations and uncertainties, Global Ecol. Bio-
geogr., 9, 225–252.

Langenfelds, R. L., R. J. Francey, B. C. Pak, L. P. Steele, J. Lloyd, C. M.
Trudinger, and C. E. Allison (2002), Interannual growth rate variations of
atmospheric CO2 and its d13C, H2, CH4, and CO between 1992 and 1999
linked to biomass burning, Global Biogeochem. Cycles, 16(3), 1048,
doi:10.1029/2001GB001466.

Law, R. M., P. J. Rayner, L. P. Steele, and I. G. Enting (2003), Data and
modelling requirements for CO2 inversions using high-frequency data,
Tellus, Ser. B, 55(2), 512–521.

Lee, K., D. Karl, R. Wanninkhof, and J. Zhang (2002a), Global esti-
mates of net carbon production in the nitrate-depleted tropical and
subtropical oceans, Geophys. Res. Lett., 29(19), 1907, doi:10.1029/
2001GL014198.

Lee, T., I. Fukimori, D. Menemenlis, Z. Xing, and L. Fu (2002b), Effects
of Indonesian throughflow on the Pacific and Indian Ocean, J. Phys.
Oceanogr., 32, 1404–1429.
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Figure 2. (a) Mean anomalous gross rate obtained from the data at all stations of Figure 1. (b, c) Global
land and global ocean flux anomalies over 1980–1998 (in GtC per year) as obtained from our ensemble
of inversions (gray zone defines the range of all inversions, and dark line denotes the mean), from Rayner
et al. [1999], from the SLAVE land surface model [Friedlingstein et al., 1995], from the LPJ land surface
model [Sitch et al., 2003], from the OPA-HAMOCC3 ocean model [Le Quéré et al., 2000], and from the
MIT ocean model [McKinley et al., 2003].
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Figure 3. Regional land and ocean flux anomalies over 1980–1998 (in GtC per year) for the Northern
extratropical land and ocean (>20�N), the tropical land and ocean, the southern extratropical land
(<20�S), the temperate Southern Ocean (50�S–20�S), and the austral ocean. Gray zone and color lines
correspond to the different estimates as in Figure 2.
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Figure 7. Flux IAVestimated for North America (three individual regions of Figure 1 grouped together)
for different inverse setup and for bottom-up models: mean inversion (black), inversion where we stop
assimilating new stations after 1989 (dark blue), inversion with all 67 sites extrapolated over the entire
period (1980–1998) from Globalview (orange), and mean inversion plus some corrections computed
from the interannual wind experiment (i.e., inversion of the concentration differences from a direct
simulation with and without interannual winds; see section 3.3; light blue).

Figure 8. Flux anomalies for the equatorial Pacific Ocean from our ensemble of inversions (gray zone
for the full range and dark line for the mean), from the mean inversion plus some corrections computed
from the interannual wind experiment (i.e., inversion of the concentration differences from a direct
simulation with and without interannual winds; see section 3.3), from the OPA and MIT ocean models,
and from a compilation of oceanic data [Feely et al., 1999]. The SOI index is overplotted (right axis).
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