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INTRODUCTION

The role of fungus-growing termites on soil functioning is well documented. This group of higher termites, abundant in tropical and subtropical ecosystems, is known to have a significant effect on the physical and chemical properties of soil [START_REF] Jouquet | Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops[END_REF]. The impact of fungus-growing termites is largely due to exosymbiosis with a basidiomycete fungus of genus Termitomyces, which grows on a special substrate (a fungus comb or fungus garden) built by termite workers [START_REF] Rouland-Lefevre | Symbiosis with fungi[END_REF], Rouland-Lefevre et al 2006) This relationship is a perfect mutualism because the termites create a favorable environment within their nests that promotes the growth of Termitomyces and in turn the symbiotic fungus and fungus comb (fecal pellets with poorly digested plant material) provide food for the termites [START_REF] Rouland-Lefevre | Symbiosis with fungi[END_REF]. Because of this interesting, rare association several phylogenetic studies focussed on fungus-growing termites and their symbiotic basidiomycete [START_REF] Aanen | The evolution of fungus-growing termites and their mutualistic fungal symbionts[END_REF][START_REF] Katoh | Genetic variation of symbiotic fungi cultivated by the Macrotermitinae termite Odontotermes formosamus (Isoptera: Termitidae) in the Ryukyu Archipelago[END_REF][START_REF] Aanen | The evolution of fungus-growing termites and their mutualistic fungal symbionts[END_REF][START_REF] De Fine Licht | Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis[END_REF].

Field observations revealed that Termitomyces was the only visible fungus in active nests but that other fungi actively developed when the nest was excavated or abandoned by termites. One fungus, commonly associated with fungus combs abandoned by termites [START_REF] Sands | The association of termites and fungi[END_REF][START_REF] Heim | Termites et champignons[END_REF][START_REF] Batra | Termite-fungus mutualism[END_REF], was placed within genus Xylaria Hill ex Schrank (Xylariaceae family). Fungi in this genus were characterized mainly by perithecial ascocarps and were known to be saprophytic for dead angiosperms and gymnosperms [START_REF] Rogers | The Xylariaceae: systematic, biological and evolutionary aspects[END_REF][START_REF] Samuels | Ascomycetes of New Zealand 8. Xylaria[END_REF]. Some authors considered termite-associated Xylaria to be latent saprobes [START_REF] Sands | The association of termites and fungi[END_REF] or mutualistic symbionts such as Termitomyces [START_REF] Batra | Termite-fungus mutualism[END_REF]. Nothing was known about their status on fungus combs, and few mycologists had studied Xylaria species in termite nests. To our knowledge only two systematic works (Rogers et al 2005, Ju and[START_REF] Ju | Xylaria species associated with nests of Odontotermes formosanus in Taiwan[END_REF] were conducted to study the Xylaria species associated with fungus combs with the latter study restricted to a single termite species from a unique environment. The main problems when studying Xylaria species in general were their cosmopolitan status, their highly variable morphology associated with stages of maturity and also probable taxonomic confusion owing to the difficulty in observing ascopore germination sites [START_REF] Whalley | The xylariaceous way of life[END_REF][START_REF] Lee | Phylogenetic analysis of Xylaria based on nuclear ribosomal ITS-5.8S-ITS2 sequences[END_REF], Rogers et al 2005). It therefore was difficult to identify the Xylaria species by means of morphological characters. When they investigated the taxonomy of some Xylaria found in termite nests Rogers et al (2005) concluded that only a molecular characterization could clarify the relationship between the two organisms. However the phylogenetic position of termite-associated Xylaria was still not defined and it was not clear whether the proliferation of a particular Xylaria on fungus combs was due to evolution with termites. It also was not known whether one single Xylaria was related to a single termite host or whether a particular Xylaria species could occur in nests of various species of termite. The host specificity of termite-associated Xylaria needed to be clarified.

The internal transcribed spacer (ITS) region of nuclear ribosomal DNA is a convenient target for phylogenetic analysis in fungi. Characteristics of the ITS region (small size of the region, good intergeneric resolution, weak intraspecific variability, easily amplified using universal primers) associated with the recent expansion of the spacer sequences database make this region extremely useful for resolving lower level relationships [START_REF] Larena | Design of a primer for ribosomal DNA internal transcribed spacer with enhance specificity for ascomycetes[END_REF][START_REF] Lee | Phylogenetic analysis of Xylaria based on nuclear ribosomal ITS-5.8S-ITS2 sequences[END_REF][START_REF] Aanen | The evolution of fungus-growing termites and their mutualistic fungal symbionts[END_REF][START_REF] Belbahri | Pythium sterilum sp. nov. isolated from Poland, Spain and France: its morphology and molecular phylogenetic position[END_REF][START_REF] Morakotkarn | Molecular diversity of bamboo-associated fungi from Japan[END_REF]. This study therefore was undertaken to infer the phylogeny of Xylaria in the fungus garden of several fungus-growing termite species by using their ITS1-5.8S-ITS2 region sequences. The phylogenetic results were used as the basis for discussion on the host specificity and distribution of termite-associated Xylaria species.

MATERIALS AND METHODS

Biological material.-Fungus-growing termite species that built the fungus combs, the localities where they were collected, the isolate codes and GenBank accession numbers of sequences are provided (TABLE I). Fungus combs were kept in a sterile humidified container to promote the formation of Xylaria stromata. After 2-5 d at room temperature the elongated stromata were carefully picked up with a sterile stainless steel needle, washed with sterile milliQwater and stored in absolute ethanol at 220 C until DNA extraction was performed.

DNA extraction.-Total DNA was extracted with the method described by [START_REF] Aanen | The evolution of fungus-growing termites and their mutualistic fungal symbionts[END_REF]. A small piece of stromata (200-250 mg) was crushed in a 2 mL sterile Eppendorf tube containing 500 mL CTAB lysis buffer with zirconium balls. The mixture was homogenized by beadbeating (RetschH MM 200,Germany) for 2 min at maxi- 0 M YCOLOGIA mum speed (50 Hz) then incubated 30 min at 65 C. After 2 min centrifugation at 14 000 g the supernatant was deproteinized by phenol : chloroform : isoamyl alcohol solution (25 : 24 : 1; v/v/v) and washed with chloroform. After centrifugation 15 min at 14 000 g the supernatant was transferred to a phase lock gel tube (Eppendorf) with an equal volume of chloroform isoamyl (24 : 1), and the mixture was homogenized and centrifuged (4 min, 4 C, 14 000 g). A total of 500 mL of the supernatant was precipitated with a double volume of polyethylene glycol (30% PEG, 1.6 M NaCl). After 30 min centrifugation at 4 C and 14 000 g the supernatant was removed and the pellet was rinsed twice in 70% ethanol, air dried and resuspended in 25 mL TE buffer (10 mM Tris-HCl, pH 8.5). The DNA concentration was quantified with a spectrophotometer (NanoDropH ND-1000 UV-Vis Spectrophotometer). DNA purity was checked at 260-280 nm and before PCR amplification each DNA extract was diluted to a final concentration of 50 ng mL 21 .

Polymerase chain reaction and sequencing of the ITS region.-The entire region ITS1-5.8S-ITS2 region was amplified by PCR. The reaction mix was a total volume of 23 mL Taq Polymerase Ready-To-Go (Amersham Pharmacia) with 0.2 mL each primer (100 pM) and 2 mL DNA solution.

The tubes were placed in a thermal cycler (GenAmp PCR system 2400; Perkin-Elmer) for amplification by 40 cycles of (i) denaturation at 94 C for 15 s, (ii) annealing at 64 C for 30 s and (iii) extension at 72 C for 90 s. PCR amplification was terminated by a final elongation for 10 min at 72 C. The primers for the amplification were ITS5 [START_REF] White | Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[END_REF] and ITS4A [START_REF] Larena | Design of a primer for ribosomal DNA internal transcribed spacer with enhance specificity for ascomycetes[END_REF]. Amplification products were purified with a QIAquick PCR purification kit protocol (QIAGEN) and electrophoresed on a 1% agarose gel. The purified products were used for the sequencing reaction performed by Society Genome Express (Grenoble, France).

Phylogenetic analysis.-The ITS region of 18 Xylaria samples from termite fungus combs, three ascomycetes associated with termite nest, five other Xylaria species (chosen according to the phylogeny of Xylaria proposed by Okane and Nakagiri 2007) and a related fungus (Diatrype disciformis) from GenBank were used (TABLE I). The alignments were performed with the multiple alignment program Clustal X [START_REF] Thompson | The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[END_REF]. The sequence alignment was corrected manually, focusing on gap positions. DNA sequence data was analyzed to provide pairwise percentage sequence divergence. In all analyses Diatrype disciformis was used as outgroup. The heuristic search option and the neighbor joining (NJ) method [START_REF] Saitou | The neighbor joining method: a new method for reconstructing phylogenetic trees[END_REF] of PAUP [START_REF] Swofford | PAUP*: phylogenetic analysis using parsimony (*and other methods)[END_REF] were used respectively for parsimony and distance analyses. All characters were weighted equally, and gaps were treated as missing data. Bootstrap confidence intervals on each branching pattern were calculated from 1000 replications of resampling [START_REF] Felsenstein | Confidence limits on phylogenies: an approach using the bootstrap[END_REF].

RESULTS

Several samples studied were found to have ITS sequences with less than 1% divergence. They were considered to have the same sequences. Sequences of AO7, ASO5, AMS9, AMS10, ASMA4, AMB8, MB11, MB12 and MS13 were identical, and sequences of ASMG1 and ASMG2 were similar to each other. According to work on fungal ITS region only one sequence from each group, ASO5 and ASMG2 respectively, was used for the construction of the trees [START_REF] Aanen | The evolution of fungus-growing termites and their mutualistic fungal symbionts[END_REF]. Phylogenetic relationships inferred from the ITS1-5.8S-ITS2 region sequences of Xylaria species and related fungi are shown (FIG. 1), which is the tree produced with neighbor joining. Three equally parsimonious trees were obtained by parsimony analysis. Some differences were noted in the branching pattern for the positions of Xylaria arbuscula, which was supported by low bootstrap values, but they were topologically identical to the NJ tree. The phylogenetic tree produced with neighbor joining showed that all termite-associated Xylaria formed a single clade (FIG. 1), although it was not well supported by bootstrap values. This clade was divided into three groups, A, B and C. Group A included 11 of the 18 sequences obtained in this study and one undetermined fungus also isolated from fungus comb. This cluster was well supported by a bootstrap value of 100%. Cluster B contained two subclades, B1 and B2. Subclade B1, which included AO1 (from O. pauperans) and Geniculisynnema termiticola, was well supported by a bootstrap value of 99%, whereas subclade B2, which included AAG5, AM3, ASMC3 and the uncultured ascomycete (GenBank accession No. AB217790) also isolated from fungus comb, was supported by a bootstrap value of 60%. Clade C, which was fairly well supported by bootstrap analysis, included strains AMB2 (from M. bellicosus) and AMS4 (from M. subhyalinus). All other Xylaria species used in this analysis merged into a single cluster that was clearly distinct from clade ABC (FIG. 1).

DISCUSSION

This study attempted to determine the genetic diversity among termite-associated Xylaria species and to define the relationship between them and their termite hosts. The phylogenetic analysis performed in this study clearly demonstrated that termite-associated Xylaria formed a monophyletic group, although this was only partially supported by bootstrap values, particularly regarding the position of species from Group B, which remained unstable. These results supported the phylogenetic study of [START_REF] Visser | Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach[END_REF], which also showed that all termiteassociated Xylaria cluster together. [START_REF] Lee | Phylogenetic analysis of Xylaria based on nuclear ribosomal ITS-5.8S-ITS2 sequences[END_REF] showed that all endophytic Xylaria species in their study merged into a single clade. These studies indicate clearly that genus Xylaria was nonmonophyletic [START_REF] Brunner | Taxonomy of some Xylaria species and xylariaceous endophytes by isoenzyme electrophoresis[END_REF][START_REF] Guo | Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences[END_REF][START_REF] Davis | Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution and symbiosis[END_REF].

Eighteen taxa of 11 fungus-growing species from eight localities were used in this study. Only nine strains of Xylaria were found on termite fungus combs with one strain closely related to five termite genera, according to the sequences obtained. This indicated that only a few Xylaria species occurred on the comb. It is interesting to note that no sequences from Xylaria matched any of those isolated by [START_REF] Ju | Xylaria species associated with nests of Odontotermes formosanus in Taiwan[END_REF] from Odontotermes formosanus nests. This could indicate that the Xylaria isolated from the termites comb were different from those present in the nest. One termite-associated Xylaria was able to grow on the fungus comb of several termite species.

The occurrence of one particular Xylaria species in a given nest therefore is not restricted to one single fungus-growing termite species. No evidence supported the occurrence of two or more Xylaria taxa on the comb of one particular termite species collected from one particular environment. However [START_REF] Okane | Taxonomy of an anamorphic xylariaceous fungus from a termite nest found together with Xylaria angulosa[END_REF] found two xylariaceous fungi together on an Odontotermes formosamus comb. The first was identified as X. angulosa and the second as Geniculisynnema termiticola gen. and sp. nov. This new genus and species used in our study was clustered with the termite-associated Xylariaceae group as well as both ascomycete fungi taken from one particular O. formosamus colony [START_REF] Shinzato | Termite-regulated fungal monoculture in fungus comb of a Macrotermitinae termite Odontotermes formosanus[END_REF]. The fact that, unlike the other endophytic Xylaria, genus Geniculisynnema was clustered with the clade of the strains isolated during this study raised the question about the effective affiliation of termite-associated Xylariaceae to genus Xylaria. Several authors believe that, on the basis of taxonomic characteristics, xylariaceous fungi found associated with fungus-growing termite nests are significantly different from other Xylaria species and that they therefore should be placed within another genus (see reference in Rogers et al 2005). Furthermore nucleotide divergence comparisons (data not shown) revealed a significant difference between Xylaria species associated with fungus-growing termite nests and those commonly found as wood endophytes. The new molecular data provided by our study and the special niche (i.e. fungus-growing termite comb) strongly support placing termite-associated Xylaria at least in a specific subgenus.

The main hypothesis for this study was that the Xylaria species found on fungus comb might have evolved with termites, but the findings appear to show no co-evolution between Xylaria and hosts. Furthermore, when geographical origins were correlated with the Xylaria taxa, the results suggested that geographical location did not play a major role in the distribution of Xylaria species on fungus comb and one particular Xylaria species was found to be associated with several termite genera collected from different environments. [START_REF] Visser | Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach[END_REF] concluded the same but their samples, originated from South Africa only, were less informative on this topic. Based on our results, termite-associated Xylaria cannot be considered termite symbionts like Termitomyces spp. [START_REF] Sreerama | Isolation and properties of carboxylesterases of the termite gutassociated fungus, Xylaria nigripes K., and the identity from the host termite, Odontotermes horni W., midgut carboxylesterases[END_REF] also suggested, with regard to enzymatic activity, that there might not be any symbiotic association between the termite gutassociated fungus Xylaria nigripes and its termite host Odontotermes horni. However the other Xylaria, most of which are endophytic species, were vertically and/ or horizontally transmitted through seeds of their hosts [START_REF] Bayman | Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico[END_REF][START_REF] Davis | Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution and symbiosis[END_REF].

In a comparable insect mutualistic association (fungus-growing ant symbiosis) some parallels were drawn between termite-associated Xylaria and an Ascomycete fungus of genus Escovopsis, which infected leaf-cutter ant gardens to the detriment of colony growth and crop productivity [START_REF] Mueller | Fungus-farming insects: multiple origins and diverse evolutionary histories[END_REF]. Phylogenetic studies had shown that Escovopsis was a specialized parasite of fungus-growing ant symbiosis and evolved with the hosts [START_REF] Currie | Ancient tripartite coevolution in the attine ant-microbe symbiosis[END_REF], but this study did not reveal any evidence of a similar pattern between Xylaria and fungus-growing termites.

Does the fungus select the termite nest as their particular type of habitat? It could be argued that the Xylaria species found on fungus comb unlike other Xylaria are specialized for this substrate and therefore probably are found in saprophytic association with termite nests. Furthermore grooming, engineering activity and contact between termite species helped to disperse Xylaria spores to a number of nests. It also should be noted that, as Xylaria nigripes had already been isolated from termite guts [START_REF] Sreerama | Isolation and properties of carboxylesterases of the termite gutassociated fungus, Xylaria nigripes K., and the identity from the host termite, Odontotermes horni W., midgut carboxylesterases[END_REF], winged reproductive termites might also transmit termite-associated Xylaria and inoculate new colonies. Termite-associated Xylaria on fungus combs might play a role similar to that played by other Xylaria species (i.e. awaiting host senescence and further decomposition of the substrate). This strategy has the advantage over other saprophytic species because it claims the cell materials before the start of decomposition [START_REF] Davis | Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution and symbiosis[END_REF]. This could explain why termite-associated Xylaria were not observed on active combs and why they seemed more competitive and rapidly overgrew only when the combs had been removed from the nest or abandoned by the termites. [START_REF] Wood | The mutualistic association between Macrotermitinae and Termitomyces[END_REF] also suggested that Xylaria species might be in a dormant state on fungus combs and become active only if combs died or were removed from the nest. However no evidence shows Xylaria species either in mycelium form or in ungerminated spores in active combs (i.e. with termites). It might be that the comb microclimate conditions (temperature, humidity, CO 2 , etc) are more favorable to the growth of Xylaria species when termites leave the combs.

This work was the first attempt to infer the molecular phylogeny of termite-associated Xylaria and to investigate the relationship between termiteassociated Xylaria and hosts. However the isolation technique used to obtain Xylaria strain did not let us cover combs unable to produce Xylaria stromata. It is possible therefore that these samples also contain Xylaria species that were not detected under experimental conditions. Specific probes designed with the new molecular data provided by this study and DNA extraction directly from Macrotermitinae fungus combs and worker gut contents might be a further line of research.

FIG. 1 .

 1 FIG. 1. Phylogenetic tree of termite-associated Xylaria inferred by neighbor joining analysis of the ITS1-5.8S-ITS2 sequences. Diatrype disciformis (accession No. AJ390410) was used as outgroup. Percentages of 1000 bootstrap resampled datasets are indicated on corresponding branches only for values . 50. Vertical bars and capital letters are used for the three clades (A, B, C) and subclades (B1, B2) as discussed in the text. Sequences obtained during this study are identified by their strain codes and GenBank accession numbers. The sequences of X. arbuscula, X. mali, X. enteroleuca, X. acuta and X. longipes are taken from Lee et al (2000); uncultured Ascomycete (accession No. AB217790) and Ascomycota sp. (accession No. AB217784) from Shinzato et al (2005) and Geniculisynnema termiticola (gen. and sp. nov.) from Okane and Nakagiri (2007).

TABLE I .

 I Taxa used in this study

	Species	Strain	Termite symbiont	Origin	GenBank accession Nos.
	Xylaria				
	Undetermined	AO1	Odontotermes pauperans	Ivory coast (Africa)	EU164403
	Undetermined	AO6	Odontotermes sp1	Benin (Africa)	EU164401
	Undetermined	AO7	Odontotermes sp2	Benin (Africa)	EU203583
	Undetermined	AMS4	Macrotermes subhyalinus	Burkina Faso (Africa)	EU164407
	Undetermined	AMS10	Macrotermes subhyalinus	Cameroon (Africa)	EU203581
	Undetermined	AMS9	Macrotermes subhyalinus	Cameroon (Africa)	EU203580
	Undetermined	AMS13	Macrotermes subhyalinus	Chad (Africa)	EU203586
	Undetermined	AMB8	Macrotermes bellicosus	Benin (Africa)	EU203582
	Undetermined	AMB2	Macrotermes bellicosus	Burkina Faso (Africa)	EU164406
	Undetermined	AMB11	Macrotermes bellicosus	Togo (Africa)	EU203587
	Undetermined	AMB12	Macrotermes bellicosus	Togo (Africa)	EU203588
	Undetermined	AAG5	Ancistrotermes cavithorax	Togo (Africa)	EU164400
	Undetermined	AM3	Microtermes sp.	Burkina Faso (Africa)	EU164408
	Undetermined	ASMC3	Macrotermes carbonarius	Vietnam (Asia)	EU164404
	Undetermined	ASMA4	Macrotermes annandalei	Vietnam (Asia)	EU203585
	Undetermined	ASMG1	Macrotermes gilvus	Thailand (Asia)	EU203584
	Undetermined	ASMG2	Macrotermes gilvus	Thailand (Asia)	EU164402
	Undetermined	ASO5	Odontotermes sp.	Vietnam (Asia)	EU164405
	Xylaria acuta	-	-	MI (USA)	AF163026
	Xylaria arbuscula	-	-	California (USA)	AF 163029
	Xylaria mali	-	-	Korea (Asia)	AF 163040
	Xylaria longipes	-	-	Netherlands(EU)	AF163038
	Xylaria enteroleuca	-	-	HI (USA)	AF 163033
	Undetermined ascomycete				
	Uncultured ascomycete	-	Odontotermes formosanus	Japan (Asia)	AB217790
	Ascomycota sp.	-	Odontotermes formosanus	Japan (Asia)	AB217784
	Geniculisynnema termiticola	-	Odontotermes formosanus	Japan (Asia)	AB274813
	Dyatripe disciformis	-		Spain (EU)	AJ390410
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