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Abstract. There is a growing consensus that land surface
models (LSMs) that simulate terrestrial biosphere exchanges
of matter and energy must be better constrained with data
to quantify and address their uncertainties. FLUXNET, an
international network of sites that measure the land surface
exchanges of carbon, water and energy using the eddy covari-
ance technique, is a prime source of data for model improve-
ment. Here we outline a multi-stage process for “fusing”
(i.e. linking) LSMs with FLUXNET data to generate bet-
ter models with quantifiable uncertainty. First, we describe
FLUXNET data availability, and its random and systematic
biases. We then introduce methods for assessing LSM model
runs against FLUXNET observations in temporal and spatial
domains. These assessments are a prelude to more formal
model-data fusion (MDF). MDF links model to data, based
on error weightings. In theory, MDF produces optimal analy-
ses of the modelled system, but there are practical problems.
We first discuss how to set model errors and initial condi-
tions. In both cases incorrect assumptions will affect the
outcome of the MDF. We then review the problem of equi-
finality, whereby multiple combinations of parameters can
produce similar model output. Fusing multiple independent
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and orthogonal data provides a means to limit equifinality.
We then show how parameter probability density functions
(PDFs) from MDF can be used to interpret model validity,
and to propagate errors into model outputs. Posterior pa-
rameter distributions are a useful way to assess the success
of MDF, combined with a determination of whether model
residuals are Gaussian. If the MDF scheme provides evi-
dence for temporal variation in parameters, then that is in-
dicative of a critical missing dynamic process. A compari-
son of parameter PDFs generated with the same model from
multiple FLUXNET sites can provide insights into the con-
cept and validity of plant functional types (PFT) – we would
expect similar parameter estimates among sites sharing a sin-
gle PFT. We conclude by identifying five major model-data
fusion challenges for the FLUXNET and LSM communities:
(1) to determine appropriate use of current data and to ex-
plore the information gained in using longer time series; (2)
to avoid confounding effects of missing process represen-
tation on parameter estimation; (3) to assimilate more data
types, including those from earth observation; (4) to fully
quantify uncertainties arising from data bias, model struc-
ture, and initial conditions problems; and (5) to carefully test
current model concepts (e.g. PFTs) and guide development
of new concepts.
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Figure 1 The multi-stage process for model-data fusion: a conceptual diagram showing the main steps (and the 

iterative nature of these steps) involved in a comprehensive data-model fusion. Fig. 1. The multi-stage process for model-data fusion: a conceptual
diagram showing the main steps (and the iterative nature of these
steps) involved in a comprehensive data-model fusion.

1 Introduction

Land surface models are important tools for understanding
and predicting mass and energy exchange between the ter-
restrial biosphere and atmosphere. A land surface model
(LSM) is a typical and critical component of larger domain
models, which are aimed at global integration, for example
global carbon cycle models and prognostic global climate
models. These integrated models are key tools for predict-
ing the likely future states of the Earth system under anthro-
pogenic forcing (IPCC, 2007), and for assessing feedbacks
with, and impacts on, the biosphere (MEA, 2005). Land sur-
face models represent the key processes regulating energy
and matter exchange – photosynthesis, respiration, evapo-
transpiration (Bonan, 1995; Foley et al., 1996; Williams et
al., 1996; Sellers et al., 1997), and their coupling. These
processes are sensitive to environmental drivers on a range
of timescales, for example, responding to diurnal changes
in insolation, and seasonal shifts in temperature and precip-
itation. Land surface processes influence the climate sys-
tem, through their control of energy balance and greenhouse
gas exchanges. Forecasts of global terrestrial C dynamics
that rely on LSMs show significant variability over decadal
timescales (Friedlingstein et al., 2006), especially when cou-
pled to climate, indicating that major uncertainties remain
in the representation of critical ecosystem processes and cli-
mate feedbacks within global models.

In recent years the widespread use of the eddy covari-
ance (EC) methodology has led to a large increase in data
on terrestrial land surface exchanges (Baldocchi et al., 2001).
FLUXNET is an international network of EC sites with data
processed according to standardized protocols (Papale et al.,
2006). The EC time-series data from FLUXNET provide rich
insights into exchanges of water, energy and CO2 across a

range of biomes and timescales. While LSM forward runs
are commonly compared with EC data, there is a grow-
ing consensus that models must be better constrained with
such data to address process uncertainty (Bonan, 2008). A
stronger link between models and observations is needed to
identify poorly represented or missing processes, and to pro-
vide confidence intervals on model parameter estimates and
forecasts.

New methods are becoming available to assist data anal-
ysis and generate links to models, based on the concept of
model-data fusion, MDF (Raupach et al., 2005). MDF en-
compasses a range of procedures for combining a set or sets
of observations and a model, while quantitatively incorporat-
ing the uncertainties of both. MDF is used to estimate model
states and/or parameters, and their respective uncertainties.

The objective of this paper is to provide guidance to the
LSM community on how to make better use of eddy covari-
ance data, particularly via MDF. We first outline the philo-
sophical principles behind model-data fusion for model im-
provement. We then discuss the structure of typical land sur-
face models and how they are parameterised. Next we de-
tail FLUXNET data availability and quality, specifically in
the context of land surface models. We discuss approaches
for model and data evaluation, focussing on new techniques
using time series and spatial analyses. Finally we discuss
formal model-data fusion and highlight the need for multiple
constraints in model evaluation and improvement, and effec-
tive assessment of model and data errors. We conclude with
a set of challenges for the LSM and MDF communities.

2 The philosophy of model-data fusion for model
improvement

Model calibration, evaluation, testing, and structural im-
provement (re-formulation) are all key aspects of model-data
fusion; in other words, MDF is not simply tuning model pa-
rameters to yield model predictions that match the calibra-
tion data. Rather, it is a multi-stage process (Fig. 1). At
each of these stages, there is interplay between data, model
structure, and modeller. The process details depends some-
what on whether the problem is focussed on state estimation
of the system, or on parameter estimation of the model. In
both cases a rigorous characterization of the model structure
through consistency checks and testing sensitivity to param-
eters and drivers, in the same way as in classical forward
modelling approaches, is still a prerequisite for a meaning-
ful data-model fusion. This model characterization also con-
stitutes the baseline against which any improvements and
reductions of uncertainties can be judged. Ifstate estima-
tion is the goal, then model states are adjusted to generate
closer agreement with the observations. Further analysis can
make use of these state adjustments to identify poorly rep-
resented processes and their timings. It is important to en-
sure that state adjustments are consistent with all independent
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Table 1. Land surface model components and details, after Liu and Gupta (2007).

Model component Examples for typical LSMs

System boundary Lower atmosphere, deep soil/geological parent material
Forcing inputs Air temperature, short and long-wave radiation, precipitation, wind speed, vapour pressure deficit,

atmospheric CO2 concentration
Initial states Biogeochemical pools, vegetation and soil temperature and water content
Parameters Rate constants for chemical processes, physical constants, biological parameters
Model structure Process definitions and connectivity
Model states Biogeochemical pools, vegetation and soil temperature and water content
Outputs Biogeochemical fluxes, dynamics of model states

observations. If so, model deficiencies can be clearly located.
If model parameter estimationis the goal, then model param-
eters are adjusted so that the model state(s) come into closer
agreement with the observations. Following the optimization
of model parameters (defined here loosely to potentially in-
clude both parameterssensu strictoand state variables), it is
vitally important that further analyses be conducted by the
modeller to: (1) quantify uncertainties in optimized param-
eters (and thus identify those parameters, and related pro-
cesses, that are poorly constrained by the data); (2) evaluate
the plausibility and temporal stability of optimized parame-
ter values (reality check); (3) understand when and why the
model is failing (“detective work”, which may involve addi-
tional validation against independent data sets); and (4) iden-
tify opportunities for model improvement (re-formulation of
structure and process representation). When treated in this
manner, MDF has relevance to both basic and applied scien-
tific questions. Thus, not only do identified deficiencies lead
to model reformulation (followed by further data-model fu-
sion, possibly with new data sets being brought to bear), but
the model can also be applied to answer new science ques-
tions. Successful application of the model is, however, con-
tingent on the modeller’s understanding (which comes from
the posterior analyses) of the domain (in terms of space, time,
and prognostic variables), where the model can be applied
with precision and confidence.

3 Land surface models

All models consist of seven general components; the system
boundary, forcing inputs, initial states, parameters, model
structure, model states, and outputs (Liu and Gupta, 2007).
The details of these components for typical LSMs are given
in Table 1. These are physical, chemical and biological pro-
cesses, related to fluxes of energy, water and carbon, that
are sensitive to changes in environmental forcing on multiple
time scales (Fig. 2). Models differ as to whether they also
represent processes operating on longer time scales. Some
models link CO2 fluxes to plant traits such as allocation, lit-
ter production, phenology, vegetation dynamics and compe-
tition, while others rely on prescribed inputs of vegetation
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Fig. 2. Schematic of a typical land surface model. LSMs include
a range of processes operating on different scales. LSMs can be
driven by atmospheric observations or analyses, or directly coupled
to atmospheric models. All LSMs tend to represent the hourly pro-
cesses, but daily and annual processes may not be included.

structure to drive flux predictions. Here, we focus largely
on models that couple fluxes to the dynamics of structural C
pools, as only these models are capable of prediction over
decadal timescales.

The typical approach for LSM parameterisation has been
to use the concept of plant functional types (PFT) (Prentice
et al., 1992). The terrestrial biosphere is divided into dis-
crete units based on presence or absence of trees, shrubs or
grasses; evergreen or deciduous habit; C3 or C4 photosyn-
thetic pathways; and broad or needle leaves. Each of these
PFTs has a nominal parameter vector, derived largely from
the literature, laboratory experiments, or limited field cam-
paigns focussed on particular ecosystems components, and
often supplemented by steady state assumptions. In most
models, the distribution of PFTs across the globe is pre-
scribed, but in dynamic global vegetation models (DGVMs)
the distribution of PFTs is determined by bioclimatic lim-
its and competition among PFTs within shared bioclimatic
space (Sitch et al., 2003). Field observations, however, sug-
gest that intrinsic parameter values vary over space and en-
vironmental conditions, even within a PFT, challenging the
assumptions of the PFT approach (Wright et al., 2004).
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Fig. 3. Distribution of sites that are present in the current La-THuile
2007 FLUXNET database.(a) Geographical distribution,(b) in cli-
mate (annual temperature and precipitation) space. In (b) colours
code annual potential shortwave radiation flux density [MJ m−2

day−1] according to the legend. Letters are country codes.

Differences among LSMs in structure and parameterisa-
tion mean that they have different response functions relat-
ing rates of carbon and water fluxes to global change fac-
tors (e.g., CO2 concentration, temperature, and precipitation
or soil moisture content). Subtle changes to response func-
tions and parameterizations can yield divergent modelled re-
sponses of ecosystems to environmental change, as has been
demonstrated by parameter sensitivity studies (e.g. Zaehle et
al., 2005; White et al., 2000) and model intercomparisons
(e.g. Friedlingstein et al., 2006; Jung et al., 2007). Differ-
ences in the way processes interact in the model are also
likely candidates for divergent model behaviour, but even
harder to detect than differences in process representation
(Rastetter, 2003). Rigorous comparison with data provides
the basis for better constraining model structure and for gen-
erating more defensible parameter estimates with realistic
uncertainty estimates.

4 Data availability, limitations and challenges

4.1 Overall overview

Continuous measurements of surface-atmosphere CO2 ex-
change using the eddy covariance technique started in 1990s
(Verma, 1990; Baldocchi, 2003). Consequently, many EC
observation sites have been established, leading to the de-
velopment of regional networks, such as AmeriFlux and Eu-
roflux, and then the global network FLUXNET, a “network
of regional networks” (Baldocchi et al., 2001). The need
for harmonized data processing has been recognized in the
different networks, and respective processing schemes docu-
mented in the literature (Foken and Wichura, 1996; Aubinet
et al., 2000; Falge et al., 2001; Reichstein et al., 2005; Papale
et al., 2006; Moffat et al., 2007). A first cross-network stan-
dardized dataset was established in 2000 (Marconi dataset)
and contained data from 38 sites from North America and
Europe. In 2007 the first global standardized data set (“La-
Thuile FLUXNET dataset”, cf.http://www.fluxdata.org) was
established.

4.2 Current distribution and representativeness of
flux sites

The current data set contains data from>950 years and 250
sites, from all continents except Antarctica. The majority
of sites are located within the extra-tropical Northern hemi-
sphere (Fig. 3a) and temperate climates (Table 2), although
most areas in the temperature-climate space are covered at
least by some sites (Fig. 3b). Similarly, most coarse vegeta-
tion types are covered by the current network, however with
crop sites underrepresented particularly outside North Amer-
ica and Europe. Due to the history of FLUXNET, long-term
data sets with>6 years data exist for only 38 sites (as of Au-
gust 2008), and most are forests. Even within North America
or Europe, where sites are reasonably well distributed among
the major biomes (Hargrove et al., 2003), archived flux data
on their own cannot possibly provide the information needed
for a full spatio-temporal understanding of terrestrial carbon
processes. Processes with time constants longer than the
data record usually cannot be reliably identified and param-
eterised, and spatial representativeness may still be limited
at the regional scale. For example, Fig. 4 shows temporal
development of MODIS FPAR in a 100×100 km area sur-
rounding one eddy-flux tower. The figure demonstrates that
FPAR at the tower site exceeds average FPAR for the broader
region, and indicates that the tower represents the more pro-
ductive portion of the landscape, assuming FPAR is a proxy
for productivity. This limitation can be overcome by inte-
gration of data across multiple temporal and spatial scales
– i.e. data on carbon stocks and pools, and how these pools
change over time combined with spatially extensive obser-
vations from remote sensing (Quaife et al., 2008) or national

Biogeosciences, 6, 1341–1359, 2009 www.biogeosciences.net/6/1341/2009/

http://www.fluxdata.org


M. Williams et al.: Improving land surface models with FLUXNET data 1345

Table 2. Distribution of sites in the current FLUXNET La-Thuile data set with respect to climate and vegetation classes. Climate is
defined according to aggregated Kppen-Geiger classification, cf.www.fluxdata.org. Vegetation classes (top line) are from IGBP definitions:
Croplands, closed shrublands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grassland, mixed forest,
open shrublands, savanna, wetlands, woody savanna.

Number of Sites available CRO CSH DBF EBF ENF GRA MF OSH SAV WET WSA Total

Tropical 1 0 0 10 0 1 0 1 1 0 2 16
Dry: 0 0 0 1 1 3 0 1 1 0 3 10
Subtropical/mediterranean: 5 3 11 5 17 11 2 3 2 0 4 63
Temperate 17 0 8 2 12 18 4 0 0 4 0 65
Temperate continental 7 1 9 1 17 7 8 3 0 0 0 53
Boreal 0 0 2 0 22 4 2 4 0 4 0 38
Arctic 0 0 2 0 0 1 0 0 0 3 0 6
Total 30 4 32 19 69 45 16 12 4 11 9 251

forest inventories, e.g. US Forest Inventory and Analysis Pro-
gram (Gillespie et al., 1999).

4.3 Data characteristics and limitations

The global network of eddy covariance towers not only pro-
vides flux observations themselves but also the infrastructure
necessary to study ecosystem processes, and relationships
between ecosystem processes and environmental forcing,
across a range of spatial and temporal scales. The time av-
eraging of the measurements (typically either 30 or 60 min)
is adequate to resolve both diurnal cycles and fast ecosystem
responses to changes in weather. In addition to the measured
fluxes (typically CO2 as well as latent and sensible heat)
and enviro-meteorological data, many sites maintain a pro-
gramme of comprehensive ecological measurements, includ-
ing detailed stand inventories, litterfall collections, soil res-
piration and leaf-level photosynthesis, soil and foliar chem-
istry, phenology and leaf area index.

However, a careful consideration of the limitations of the
data is mandatory to avoid overinterpretation of model-data
mismatches in evaluation or assimilation schemes. Flux data
are noisy and potentially biased, containing the “true” flux,
plus both systematic and random errors and uncertainties
(Table 3). There is a growing recognition within the EC com-
munity on the need to quantify the random errors inherent in
half-hourly flux measurements (Hollinger and Richardson,
2005; Richardson et al., 2006), but also uncertainties in the
corrections of systematic errors. Because data uncertainties
enter directly into model-data fusion (see below), misspeci-
fication of data uncertainties affects parameter estimates and
propagates into the model predictions, leading Raupach et
al. (2005) to suggest that “data uncertainties are as important
as data values themselves”.

Recent research, using data from sites in both North Amer-
ica (Richardson et al., 2006) and Europe (Richardson et al.,
2008), indicates that the random error scales with the mag-
nitude of the flux, thus violating one key assumption (ho-
moscedasticity) underlying ordinary least squares optimiza-
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Fig. 4. Temporal development of MODIS fPAR-estimates dur-
ing 2002 at the French Puchabon FLUXNET site, an evergreen
broadleaf forest (Holm Oak). Diamonds indicate the time series
at the tower-pixel, vertical lines denote between-pixel standard de-
viation of 3×3 pixels around the tower. Colours code the frequency
of pixels within 100×100 km around the tower having the respec-
tive fPAR at the day of the year indicated on the x-axis. Solid and
dashed lines indicate median, lower and upper quartile fPAR over
all pixels 100×100 km around the tower. It can be seen that the
tower represents the more productive portion of the landscape (as-
suming FPAR is a proxy for productivity).

tion. On the other hand, Lasslop et al. (2008) analysed fur-
ther properties of the random error component and found
little temporal autocorrelation and cross-correlation of the
H2O and CO2 flux errors, implying that the weighted least
squares criterion yields maximum likelihood estimates of the
model parameters. The assumptions about the statistical dis-
tribution of the flux error influence the weighting on data in
parameter and state estimation procedures. For instance, a
least squares weighting is required if flux error is Gaussian,
while mean absolute error is required if flux error is Lapla-
cian (Richardson and Hollinger, 2005). Random flux mea-
surement errors are relatively large at the half-hourly time
step (∼20% of the flux), but – owing to the large number of
measurements – diminish for annual sums when propagated

www.biogeosciences.net/6/1341/2009/ Biogeosciences, 6, 1341–1359, 2009

www.fluxdata.org


1346 M. Williams et al.: Improving land surface models with FLUXNET data

Table 3. Characteristics of systematic and random uncertainties in eddy covariance measurements of surface-atmosphere exchanges of CO2,
H2O and energy.

Systematic Random

Examples – inadequate nocturnal turbulence (lowu∗) – uncertainties due to surface heterogeneity and
time varying footprint

– attenuation and imperfect spectral response;
calibration errors

– turbulence sampling errors

– incomplete energy balance closure – measurement equipment glitches (IRGA and
sonic anemometer “spikes”)

– advection and non-flat terrain

Time scale – operate at varying time scales: fully systematic
vs. selectively systematic

– affect all measurements; assume no
autocorrelation

– accumulate linearly over time, i.e. as
∑

di – accumulate in quadrature over time, i.e. as√∑
(εi)

2

Nature – deterministic, with variety of effects: e.g. fixed
offset vs. relative offset

– stochastic: probability distribution function with
mean zero and standard deviations

Potential for identification – cannot be identified through statistical analyses – characteristics of pdf can be estimated via
statistical analyses (but may be time-varying)

Potential for correction – can correct for systematic errors (but corrections
themselves are uncertain)

– cannot correct for random errors

Effect on data-model fusion – uncorrected systematic errors will bias
data-model fusion analyses

– random errors limit agreement between
measurements and models, but should not bias
results

as independent errors, typically resulting in an uncertainty
<50 g C m−2 yr−1 (Richardson et al., 2006; Lasslop et al.,
2009). However, the characterization of the statistical prop-
erties of flux measurement error remains currently under de-
bate and probably varies between sites and environmental
conditions (Richardson et al., 2006; Lasslop et al., 2008).

Systematic flux biases are less easily evaluated, but are
certainly non-trivial (Goulden et al., 1996; Moncrieff et al.,
1996; Baldocchi, 2003). One major source of bias is in-
correct measurement of net ecosystem exchange under low-
turbulence conditions, especially at night. Attempts to mini-
mize this bias use so-calledu∗-filtering (Papale et al., 2006),
in which measurements are rejected when made under condi-
tions of low turbulence (i.e. below a threshold friction veloc-
ity). However, the threshold value foru∗ is often uncertain.
Preliminary analysis of the La Thuile data set indicated that
the uncertainty introduced varies between sites, and can be
>150 gC m−2 yr−1 in some cases (Reichstein et al., unpub-
lished data); hence a careful analysis of this effect is war-
ranted.

Energy balance closure at most sites is poor: the sum of
sensible, latent and soil heat fluxes is generally∼20% lower
than the total available radiative energy, which may indicate
systematic errors in measured CO2 fluxes as well (Wilson
et al., 2002). Advection is believed to occur at many sites,
particularly those with tall vegetation, and is thought to bias

annual estimates of net sequestration upwards, i.e. more neg-
ative NEE (Lee, 1998). While these (and other) system-
atic errors are known to affect flux measurements, much less
is known about how to adequately quantify and correct for
them; typically the time scale at which the correction needs
to be applied, and in some cases even the direction of the
appropriate correction, is highly uncertain (see discussion in
Richardson et al., 2008).

Although attempts are made to make continuous flux mea-
surements, in reality there are gaps in the flux record. These
gaps most often occur when conditions are unsuitable for
making measurements (e.g., periods of rain or low turbu-
lence), or as a result of instrument failure. A variety of meth-
ods have been proposed and evaluated for filling these gaps
and producing continuous time series; the best methods ap-
pear to approach the limits imposed by the random flux mea-
surement errors described above (e.g., Moffat et al., 2007). In
general, MDF will want to use only measured, and not gap-
filled, data, because gap-filling involves the use of a model
and so can contaminate the MDF. However, in some cases
(if, for example, the model time step is different from that of
the data, e.g. daily) it may be necessary to resort to using gap-
filled data, in which case it is important that the distinction
between “measured” and “filled” data be understood.

Another significant challenge to obtaining process-
level insights from measured fluxes is that tower-based
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measurements reflect the net ecosystem exchange (NEE) of
CO2, whereas the process-related quantities of interest are
typically the component fluxes, gross photosynthesis (GPP)
and ecosystem respiration (RE ; also the above- and below-
ground, and autotrophic and heterotrophic, components of
ecosystem respiration), which, unlike NEE, represent dis-
tinct sets of physiological activity. In a model-data fusion
context, the net flux (particularly when integrated over a full
day or even month) does not constrain the overall dynamics
as well as the component fluxes because the net flux could be
mistakenly modelled by gross fluxes having large compen-
sating errors; any combination of GPP andRE magnitudes
can result in a given NEE; the problem is mathematically un-
constrained.

4.4 Links to other datasets

While flux data themselves are valuable for evaluating and
constraining models, meteorological and ecosystem struc-
tural data are needed as drivers and additional constraints.
While there are also uncertainties associated with ancillary
meteorological data, these are primarily due to spatial hetero-
geneity rather than instrument accuracy or precision. Similar
and often larger problems of measurement accuracy, sam-
pling uncertainty and representativeness occur with biomet-
ric measurements (e.g. fine root NPP) and chamber based
flux estimates (e.g. soil and stem respiration) (Savage et al.,
2008; Hoover, 2008).

Long-term continuous flux observations are much more
valuable when coupled with a full suite of ancillary ecologi-
cal measurements. Having measurements of both pools and
fluxes means that both can be used to constrain models. With
multiple constraints the biases in any single set of measure-
ments becomes less critical and data-set internal inconsisten-
cies – that can never be resolved by a model obeying conser-
vation of mass and energy – can be identified (Williams et
al., 2005). Thus flux sites most appropriate for model data
fusion under current conditions have multiple years of con-
tinuous flux and meteorological data, with well-quantified
uncertainties, along with reliable biometric data on vegeta-
tion and soil pools and primary productivity, as well as tem-
poral estimate of leaf area index, soil respiration and sap-
flux. Many global change experiments that manipulate tem-
perature, CO2, precipitation, nitrogen and other factors often
provide extensive measurements of many carbon, water, and
energy processes. Data sets from manipulation experiments
are not only valuable for constraining parameters in land sur-
face models, but also useful for examining how environmen-
tal factors influence key model parameters (Luo et al., 2003;
Xu et al., 2006).

5 Techniques for model and data evaluation

There exist a range of metrics for evaluating models against
observations which are an important component of the
model-data fusion process (Fig. 1). Typical techniques in-
clude calculations of root-mean-square error (RMSE), resid-
ual plots, and calculation of statistics likeR2 to determine the
amount of measurement variability explained by the model.
These approaches are discussed elsewhere in detail (Taylor,
2001). Here, instead, we discuss novel model evaluation
techniques, using eddy flux data to evaluate models in the
time and frequency domains, and in physical and climate
space, before considering model-data fusion itself.

5.1 Evaluation in time: measurement patterns to assess
model performance

The evaluation of LSMs using traditional methods may not
be optimal because of large, non-random errors and bias in
instantaneous or aggregated fluxes. We suggest that model
evaluation may be improved by quantifying patterns of C
exchange at different frequencies (Baldocchi et al., 2001;
Braswell et al., 2005), recognizing especially the tendency
for models to fail at lower frequencies, i.e. annual or interan-
nual time scales (Siqueira et al., 2006).

We demonstrate such an approach for model improvement
and evaluation by comparing eight years of measured latent
heat exchange (LE) from the Tumbarumba flux monitoring
site (Leuning et al., 2005) with corresponding predictions
from the CABLE model (Kowalczyk et al., 2006), and a
CABLE improvement that explicitly accounts for soil and
litter layer evaporation (CABLESL – Haverd et al., 2009).
CABLESL represents an improvement in overall model fit
compared to CABLE (Fig. 5a and b), but conventional scat-
terplots and associated goodness-of-fit statistics cannot de-
termine the times or frequencies when the model has been
improved, or how the model can be further improved. (We
also note that the daily flux sums are not statistically inde-
pendent). The wavelet coherence, similar in mathematical
formulation to Pearson’s correlation coefficient, can be used
to identify the times and time scales at which two time se-
ries are statistically related (Grinsted et al., 2004), and we
note that these time series can represent those of measure-
ments and models (Fig. 5c and d). Specifically, Grinsted et
al. noted that wavelet coherence values above 0.7 (yellow-
to-red colours in Fig. 5c and d) represent a significant rela-
tionship at the 95% confidence limit.

In the Tumbarumba example, variability in CABLESL is
significantly related to measurements across time at sea-
sonal time scales of approximately 4 months (102.1 days);
note the band at this time scale in Fig. 5c and its near
disappearance in Fig. 5d. At the same time, swaths of
poor model/measurement coherence exist at shorter time
scales, particularly during the years 2003 and 2005–2006.
Unique events that are responsible for these oscillations in
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Figure 5: A comprehensive model evaluation framework using measured latent energy flux (LE) from the 

Tumbarumba flux monitoring site and corresponding predictions from the CABLE model and model 

improvement by adding a soil and litter-layer evaporation scheme (CABLESL). Instantaneous (half-hourly) 

observed versus CABLE (a) and CABLESL (b) at the Tumbarumba FLUXNET site for 2001-2006. Some 

common evaluation metrics are also displayed. Int = intercept, RMSE = root-mean-square-error. EF = model 

efficiency (Meyer and Butler, 1993). The wavelet coherence between observations and the model CABLE (c) and 

CABLESL (d) are shown as the full wavelet half-plane. Regions at different time scales (the ordinate) 

corresponding to different periods of time (the abscissa) in which the model and measurement are significantly 

related at the 95% confidence interval are those that exceed a coherence value of 0.7. 

 

Fig. 5. A comprehensive model evaluation framework using measured latent energy flux (LE) from the Tumbarumba flux monitoring
site and corresponding predictions from the CABLE model and model improvement by adding a soil and litter-layer evaporation scheme
(CABLESL). Instantaneous (half-hourly) observed versus CABLE(a) and CABLESL(b) at the Tumbarumba FLUXNET site for 2001–
2006. Some common evaluation metrics are also displayed. Int=intercept, RMSE=root-mean-square-error. EF=model efficiency (Meyer and
Butler, 1993). The wavelet coherence between observations and the model CABLE(c) and CABLESL(d) are shown as the full wavelet
half-plane. Regions at different time scales (the ordinate) corresponding to different periods of time (the abscissa) in which the model and
measurement are significantly related at the 95% confidence interval are those that exceed a coherence value of 0.7.

the measurement record can be identified, and the CABLE
model further improved with such a complete “picture”, via
the display of wavelet coherence in the wavelet half-plane
(i.e. Fig. 5c and d).

5.2 Towards a spatially explicit continental and global
scale evaluation of LSMs

LSMs are often evaluated at the site level using EC time
series, which can provide detailed information on the per-
formance of the temporal dynamics of the model. How-
ever, models developed for continental to global applications
should be evaluated on the appropriate scale in both time and
space. Regional comparisons have largely been neglected
partially due to the strong site-by-site focus of flux evaluation
to date and partially due to difficulties in “upscaling”. Spa-
tially and temporarily explicit maps of carbon fluxes can be
derived from empirical models that use FLUXNET measure-
ments in conjunction with remotely sensed and/or meteoro-
logical data. Different upscaling approaches exist, ranging
from simple regression models, to complex machine learning
algorithms (Papale and Valentini, 2003; Yang et al., 2007),

The results of such data-oriented models can be used to
evaluate process-oriented LSMs operating at regional scales.
However, the success of the evaluation depends on whether
there is sufficient confidence in the empirical upscaling re-
sults, or in other words, if the error of the empirical upscal-
ing is substantially smaller than the error of the LSM simu-
lations.

We compared regional GPP predictions from several data-
oriented models against several process-based LSMs. We
undertook a comparison of mean annual GPP estimates for
36 major watersheds of Europe between four different data-
oriented models (generally using remote sensing data and
FLUXNET calibrations) and three process-oriented models
(i.e. LSMs, see Table 4 for model details). The comparison
revealed a much closer agreement regarding the spatial pat-
tern of GPP among the data-oriented models (R2>0.58) than
among the process-oriented models. A graphical intercom-
parison of the models is shown in Fig. 6, which indicates
the correlation among model predictions. It is obvious that
two of the process-oriented models had substantially poorer
fit to the data-oriented estimates than the third, LPJmL. The
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Table 4. A description of the data-oriented and process-oriented models used to generate catchment scale predictions of GPP across Europe,
which are compared in Fig. 6. Simulations of ORC, LPJmL, BGC, MOD17+, and ANN are from Vetter et al., 2008. MOD17+, ANN,
FPA+LC, WBA are calibrated with FLUXNET data.

Acronym Model name Model type Time step Model drivers References

ORC Orchidee Process-oriented Sub-daily Meteorology, Land cover,
soil water holding capacity

(Krinner et al., 2005)

LPJ Lund Potsdam Jena
managed Land (LPJmL)

Process-oriented Daily Meteorology, Land cover,
soil water holding capacity

(Sitch et al., 2003;
Bondeau et al., 2007)

BGC Biome-BGC Process-oriented Daily Meteorology, Land cover,
soil water holding capacity

(Thornton, 1998)

MOD17+ Radiation Use efficiency
model

Daily Remote sensing based
FAPAR (MODIS), Meteo-
rology, Land cover

(Running et al., 2004)

ANN Artificial Neural
Network

Data-oriented Daily Remote sensing based
FAPAR (Modis), Meteorol-
ogy, Land cover

(Papale and Valentini,
2003) updated Vetter et
al. (2008)

FPA+LC FAPAR based
Productivity
Assessment+Land Cover

Vegetation type specific
regression models between
FAPAR and GPP

Annual Remote sensing based
FAPAR (SeaWiFS), Land
cover

Jung et al., 2009

WBA Water Balance Approach Upscaling of water use
efficiency

Multi-annual Remote sensing based
LAI (MODIS,
CYCLOPES),
Meteorology, Land cover,
river runoff data

(Beer et al., 2007),
updated

LundPotsdamJenamanagedLand model (LPJmL) showed
a reasonable agreement (i.e. highR2) with the different data-
oriented results because it has a realistic implementation of
crops, in contrast to Biome-BGC and Orchidee, which sim-
ulate crops simply as productive grasslands. This treatment
appears to be inadequate, as active management and nutrient
manipulation differ between a natural grassland and a man-
aged agricultural area. Confidence in the data-oriented mod-
els is gained by the agreement among independent upscaling
approaches.

6 Model-data fusion

Rather than compare model outputs with a particular dataset
in order to test or calibrate the model, model-data fusion
techniques combines the two sources of information, model
and data, into a single product. We define the term “model-
data fusion”, sometime called “data assimilation”, to include
both state estimation and parameter estimation. State esti-
mate involves updating the model state vector PDFs accord-
ing to observations, using techniques such as the Kalman fil-
ter (Williams et al., 2005), or variational approaches typi-
cal with weather forecasting (Courtier et al., 1994). Param-
eter estimation involves determination of parameter PDFs
using observations. Model-data fusion allows for integrat-
ing multiple and different types of data, including the asso-
ciated uncertainties, and for including prior knowledge on
model parameters and/or initial state variables. However, the
timescales of model processes and observations must over-
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Fig. 6. Model estimates of catchment mean annual GPP for 36 ma-
jor watersheds in Europe are compared among different process-
and data oriented models. The figure shows the R2 value for each
paired comparison among the 8 models used (see scale bar on right).
PCA1 is the first principal component and can be regarded as the
common information content of all models. See Table 4 for abbre-
viations.

lap, otherwise useful information cannot be conveyed to the
model from those data by the assimilation scheme.

The primary objective of model-data fusion is to improve a
model’s performances by either optimizing/refining the value
of the unknown parameters and initial state variables, or by
correcting the model’s trajectory (state variables) according
to a given data set. In the context of the philosophy for
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model-data fusion outlined above, the residuals between data
and model output after assimilation and the residuals be-
tween prior and posterior state and/or parameter values are
important information for subsequent steps of model struc-
tural development. These residuals help identify model ca-
pabilities, particularly those processes which are best con-
strained by data. MDF techniques also allow for the propa-
gation of uncertainties between the parameter space and the
observation space, and thus estimation of model prediction
uncertainties, e.g. modelled carbon fluxes (Verbeeck et al.,
2006). Below, we first give a brief overview of different
MDF techniques with examples to illustrate application and
interpretation. We then discuss various problems associated
with MDF and suggest solutions.

6.1 Technical implementation

All MDF techniques require certain steps in common. First,
the model must be specified, and uncertainties on the model
initial states and parameters must be determined a priori. For
some algorithms the model uncertainty itself must be esti-
mated (e.g. Kalman filter). One approach for setting model
errors in Kalman Filter schemes is to ensure that they are set
within bounds that are small enough to avoid tracking daily
noise in observations, and large enough to shift over weekly-
seasonal timescales in response to process signals. Second,
data and their uncertainties must be specified. Third, an ob-
servation operator must be defined, which links the state vec-
tor to the observations, accounting for intermediate processes
(e.g. transport processes), requisite scaling and aggregation
(e.g. NEE=RE−GPP). Fourth, the optimality condition must
be defined, whether as some sort of cost function to be min-
imised, or a joint model-data likelihood. Fifth, the optimal
solution is determined. Finally, the posterior probability den-
sity functions of the parameters and the state vector must be
analysed and interpreted.

The search for an optimal solution and the estimation of
uncertainties can be achieved with three different classes of
algorithms:

1. “Global search” algorithms, often based on a random
generator (Braswell et al., 2005; Sacks et al., 2006).
These methods are well adapted for highly non-linear
models with multiple minima, but are usually associ-
ated with high computational cost because many model
evaluations are required. Several algorithms exist,
e.g. Metropolis or Metropolis Hastings, genetic algo-
rithms.

2. “Gradient-descent” algorithms, following identified di-
rections in the parameter space. These methods are
highly efficient, but are not best suited for highly di-
mensional nonlinear models as they may end up finding
local rather than global minima. To determine poste-
rior uncertainties, they require the calculation of model

output sensitivity to model parameters (Santaren et al.,
2007).

3. “Sequential” algorithms, such as the Kalman filter
(Williams et al., 2005; Gove and Hollinger, 2006).
These methods process data sequentially, in contrast to
the first two classes that treat all observations at once
(i.e. batch methods).

Combinations of methods can be successful (Vrugt et al.,
2005), such as a global search method to get close to the
global minimum, followed by a gradient-descent method to
pinpoint the minimum more accurately.

The optimization process for both global search and
gradient-descent generally requires the calculation of the
mismatch between model outputs (M) and observations (O)

and the mismatch between initial or “prior” (Xp) parame-
ter values and those later determined to be optimal (X) in
a Bayesian framework (Eq. 1). The essence of the Bayesian
approach is the multiplication of probabilities; in practice the
log of the data-model mismatch (log likelihood) is summed
with the log of the prior probabilities. Both mismatches are
weighted according to confidence on observations (R ma-
trix) and prior knowledge about parameter error covariance
(P matrix). TheR matrix may contain different kinds of data,
which are matched by their error covariances. TheP matrix
is crucial because it allows the consistent combination of dif-
ferent kinds of data into one formulation of the cost function.
H is the observation operator, which relates the model state
vector to the observations. The data-model and parameter
mismatches define the objective or cost function,J , used in
many batch optimisation methods (Lorenc, 1995):

J=1/2[(HM−O)T R−1(HM−O)+(X−Xp)T P−1(X−Xp)] (1)

There are similarities betweenJ and the Kalman gain (K)

used in Kalman filters.K is used to adjust the model fore-
cast (Mf ) to generate an optimal analysis (Ma) based on the
differences between model and observations, and the confi-
dence in model (P matrix) and observations (R matrix):

K = Pf H T (HP f H T
+ R)−1 (2)

Ma
= Mf

+ K(O − HMf ) (3)

The model error covariance matrix (P) is updated dynam-
ically in the Kalman filter as observations are assimilated.

The observation term can take several forms depending on
the information that we want to retrieve: either the diurnal
cycle with half hourly fluxes, or the seasonal cycle with daily
or monthly means. Temporal error correlations (systematic
biases) are likely to be severe between sub-daily fluxes, for
models and observations. To handle this data redundancy,
one can include error correlations inR (a rather difficult
task), sub-sample the whole data set, or use a mean diurnal
cycle over a relatively long period (Santaren et al., 2007).
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The cost function defined above (Eq. 1) is commonly used
when the error is known or assumed to be Gaussian, but other
options are possible. For example, the sum of absolute devia-
tions rather than squared deviations between data and model
form the likelihood when data errors are exponential, reduc-
ing the influence of outliers in the cost function compared
to Eq. (1). The choice of cost function is an important one;
an optimization intercomparison by Trudinger et al. (2007)
found significantly more variation in estimated parameters
due to definition of the cost function than choice of opti-
mization technique. Another important choice in the opti-
misation is whether to include all parameters at once at the
risk that interactions among parameters yield big uncertain-
ties and a poor convergence of the algorithm. Optimizing for
just a small set of pre-identified parameters may not include
key processes (Wang et al., 2001; Reichstein et al., 2003),
and in fact is mathematically equivalent to holding constant
those parameters not optimized.

6.2 Error estimations: random and systematic error

There are two important differences between random and
systematic measurement errors. First, whereas statistical
analyses can be used to estimate the size of random errors
(Lasslop et al., 2008), systematic errors are difficult to detect
or quantify in data-based analyses (Moncrieff et al., 1996);
but see Lee (1998). Second, random errors in data will in-
crease the uncertainty in data-model fusion parameter esti-
mates and model predictions, but should not bias the poste-
rior estimates. Systematic errors in data, on the other hand,
are more insidious in that, if not corrected first, they will di-
rectly result in biased posteriors, see Lasslop et al. (2008) for
an example.

However, as noted above, systematic errors will be iden-
tified by the multiple-constraints approach via model-data
mismatch. On the other hand, large random errors in obser-
vations, while increasing uncertainties of the estimated pa-
rameters, decrease the usefulness of the model-data fusion
approach because the analysis errors are not much reduced
from the original background (prior) errors.

Estimates of prior values and errors on model param-
eters is usually undertaken using literature values, global
databases (http://www.try-db.org/, Wright et al., 2004) and
expert estimation. This critical task partly conditions the re-
alism of the inverse estimates. The role of the user in set-
ting parameter and model errors requires careful inspection
of posterior distributions to determine if MDF has succeeded
(see Sect. 6.6).

6.3 The initial condition problem

Correct estimates of both vegetation and soil carbon pools
constitute an initial condition problem of significant rele-
vance in those LSMs with dynamic biogeochemical (BGC)
modelling. The current best practice in LSMs applied glob-
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Fig. 7. CASA model performance statistics for NEP at ten eddy
covariance sites is higher in relaxed steady state approaches (red)
than in cases considering ecosystems in equilibrium for model op-
timization (blue) (MEF – model efficiency; and NAE – normalized
average error) (Carvalhais et al., 2008).

ally is to use spin-up routines until the C cycle is in equi-
librium with pre-industrial climate, followed by transient in-
dustrial climate, atmospheric CO2 and N deposition runs
(Churkina et al., 2003; Thornton et al., 2002; Morales et
al., 2005), and then impose historical land-use change and
management. The initialization process is often prescribed
until ecosystem atmosphere fluxes are in equilibrium, which
may lead to overestimation of both soil (Pietsch and Hase-
nauer, 2006; Wutzler and Reichstein, 2007) and vegetation
pools, consequently increasing total respiration (RE). The
equilibrium assumption may be criticised as not being fully
applicable to natural ecosystems. In BGC-model-data fusion
approaches, both empirical as well as process-based method-
ologies have been proposed to address these issues (Santaren
et al., 2007; Carvalhais et al., 2008; Luo et al., 2001; Pietsch
and Hasenauer, 2006). In ecosystems far from equilibrium,
model parameter uncertainties and biases can be avoided by
relaxing the steady state assumption, i.e. optimizing the ini-
tial conditions of C pools (Carvalhais et al., 2008), which
reduces model estimates uncertainties in upscaling exercises.
As an example, in Fig. 7 we show CASA model performance
statistics for estimated net ecosystem production compared
against data from ten EC sites. We compared performance
with spun-up initial conditions (i.e. steady state) against an
approach that relaxed the steady state assumption. Perfor-
mance after parameter optimisation was higher using the re-
laxed approach rather than one that considered the system in
equilibrium.

The integration of ancillary information on soils and stand-
ing biomass pools allows the initial condition problem to be
addressed independently from other model evaluation per-
spectives. Modelled soil pools should be consistent with
measured pools. Further, information concerning tree age
or DBH distribution in forested sites can be a robust proxy
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Fig. 8. Results from a genetic algorithm (GA) applied to parameter
estimation in the DALEC model as part of the REFLEX project
(Fox et al., 2009). Synthetic, noisy and sparse data were supplied
to the GA. As the calculations proceeded, the current best estimate
of parameters and the corresponding cost function were saved, and
values of the cost function and selected parameters (p1, p10, p12)
are shown here.

for woody biomass constraints, for which forest inventories
as well as synthesis activities are key contributors (Luyssaert
et al., 2007). Disturbance and management history (Thorn-
ton et al., 2002) are additional factors that control the initial
condition of any particular simulation. There are clearly con-
siderable challenges related to generating the historical data
and including historical and current management regimes.

6.4 Equifinality

An important issue in parameter estimation is equifinality,
where different model representations, through parameters or
model structures, yield similar effects on model outputs, and
so can be difficult to distinguish (Medlyn et al., 2005; Beven
and Freer, 2001). Such correlations imply that quite differ-
ent combinations of model parameters or representations can
give a similar match of model outputs to observations. This
problem is particularly relevant to observations of net fluxes,
which on their own may not provide enough information to
constrain parameters associated with the component gross
fluxes. Further, the associated uncertainties in a posteriori
regional upscaling are significant and variable in space and
time (Tang and Zhang, 2008) Equifinality in parameter esti-
mation is illustrated in Fig. 8, which shows the results of a
genetic algorithm applied to the DALEC model (Williams et
al., 2005), as part of the REFLEX project (Fox et al., 2009).
The cost function decreased quickly at first, but after about
100 iterations of the genetic algorithm there was only grad-
ual further improvement, yet the values of some parameters
varied significantly after this point (Fig. 8). Addressing equi-
finality requires identification of covariances between param-
eter estimates, the use of multiple, orthogonal data sets, and
testing a variety of cost functions to constrain unidentifiable
parameters. Thus, it is critical to assess whether the available
observations can adequately constrain the model parameters
or whether more information is required.

6.5 Parameter validation and uncertainty propagation

Estimated parameters should always be interpreted with
great care. Posterior values are not always directly inter-
pretable (i.e. in a biological sense) due to equifinality (see
above) or to compensating mechanisms related to model de-
ficiencies/biases. In addition, simplified model structures re-
quire aggregated parameters (e.g. aVc max – maximum rate of
carboxylation – value of a “big leaf”) that will always be dif-
ferent from observed parameter values (e.g. determined from
measurements ofVc max on an individual leaf). Nevertheless,
comparison with independent real measured parameter val-
ues is an important part of the analysis and validation pro-
cess. For example, Santaren et al. (2007) successfully com-
pared their estimatedVc max with estimates from leaf-level
measurements (their Fig. 7).

A benefit of most model-data fusion approaches is to es-
timate parameter uncertainties and the corresponding model
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output uncertainties. The outcome of the MDF is a set of pa-
rameter PDFs which can then be used to generate an ensem-
ble of model runs, using time series of climate forcing data.
As an example, we generated synthetic, noisy and sparse data
from the DALEC model using nominal parameters, and sup-
plied these to an Ensemble Kalman filter (Williams et al.,
2005) for parameter estimation. The outputs of the EnKF
were parameter frequency distributions that indicated the
statistics of the retrieved parameters generated by inverting
the observations. In Fig. 9 we show the retrieved PDFs for
the turnover rates for four C pools, which can be compared
to the true parameter values (vertical lines), and the prior pa-
rameter values, which are represented by the width of the
x-axes. The process of estimating confidence intervals of
model states and predictions is highly dependent on the prior
estimates of parameter (and model) error, as shown in the
REFLEX experiment (Fox et al., 2009). We are still learning
how to properly quantify confidence intervals on parameter
and state analyses.

6.6 How to assess a model-data fusion scheme

A first step to testing if MDF approaches are effective is to
use synthetic data, where the underlying “true” state of the
system and model parameters are known. A synthetic truth is
generated by running the model with given parameters, noise
is added, and data are thinned. These data are provided to the
MDF scheme to test estimation of parameters and retrieval of
C fluxes, all of which are known (Fig. 9). A second step is
to examine posterior parameter distributions relative to pri-
ors. Have parameters been constrained? Is there evidence
that parameter priors were correct? For example, in the syn-
thetic case shown in Fig. 9 it is clear that turnover rates of
foliage and soil organic matter were better constrained by
NEE data, with PDFs concentrated around the true param-
eter values used to generate the synthetic data. Posterior
turnover rates for fine roots and wood are barely different
from the priors, with broad distributions spanning the prior
range. A third step is to check model residuals on NEE (or
any other observations), to see if they are Gaussian and not
autocorrelated, a typical hypothesis of Bayesian approaches
(see above). If multiple data time series are used, are they
all consistent with the model, or do they reveal potential bi-
ases in data or model (Williams et al., 2005)? It is useful
to iterate the optimization process from a different starting
point (initial conditions) to see if the posteriors are similar.
Testing different assumptions in the MDF is also useful, for
instance, uniform versus Gaussian priors, altered model error
estimates in KF schemes etc.

6.7 Spatial and temporal parameter variability

With increasing FLUXNET data availability over a wide
range of ecosystems, model-data fusion approaches can im-
prove our understanding and process representation ability
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Fig. 9. Parameter retrieval from a synthetic experiment using the
DALEC model (Williams et al., 2005). Synthetic, noisy and sparse
data generated from DALEC were supplied to an Ensemble Kalman
filter (Williams et al., 2005) for parameter estimation. “True” pa-
rameter values for turnover rates of foliage, stem wood, fine roots
and soil organic matter are shown by the red lines. The frequency
distributions indicate the statistics of the retrieved parameters gen-
erated by inverting the observations. The x-axis limits indicate the
spread of the prior estimates for each parameter.

at regional and global scales. So far most biogeochemical
models use the concept of “plant functional type” to repre-
sent the ecosystem diversity, with typically 6 to 15 classes.
Whether the associated parameters or process representa-
tions are generic enough to apply across climate regimes,
species differences, as well as large temporal domains or
whether they should be refined are critical questions that
FLUXNET data can help resolve.

6.7.1 Temporal variability

For a prognostic model to be useful, dynamic processes must
be represented within the model, and parameters must be
constant in time. If there is evidence that parameters vary
over time (Hui et al., 2003; Richardson et al., 2007), it means
the parameters are sensitive and that some component of
model structure is missing. The relevant structure must be
included in the model for it to have prognostic value. Like-
wise, if there is no evidence that parameters vary, then they
are shown to be insensitive. The estimation of process pa-
rameters in variable conditions over time is likely to give new
insights in processes that are poorly understood (Santaren et
al., 2007). Building on the work of Santaren et al. (2007), we
optimised the ORCHIDEE biogeochemical model against
eddy covariance data to retrieve the year-to-year variabil-
ity of maximum photosynthetic capacity (Vc max). Signifi-
cant interannual variations inVc max for the Aberfeldy and
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Fig. 10.Some results from the optimisation of 18 parameters of the
ORCHIDEE model at 4 temperate needleleaf forest sites for sev-
eral years: 2 years at le Bray (BX) and Aberfeldy (AB) and 4 years
at Tharandt (TH) and Weilden (WE). Green is prior ORCHIDEE
model, red is optimised model, black are the data. One parameter
set is optimized each year using NEE, latent, sensible and net ra-
diation fluxes (using half hourly values, see Santaren et al., 2007).
Upper panels show the model-data fit (daily values and mean diur-
nal cycle during the growing season) while the lower panel shows
the estimated Vcmax parameter values for each sites and each year:
values a reported with respect to the prior value.

Tharandt sites suggest there area additional processes related
to productivity not captured by ORCHIDEE, and possibly
linked to the N cycle (Fig. 10). Similarly, Reichstein et
al. (2003) studied drought events by estimating the seasonal
time course of parameters of the PROXEL model using eddy
covariance carbon and water fluxes at Mediterranean ecosys-
tems.

6.8 Spatial variability

The concept of plant functional type (PFT) simplifies the rep-
resentation of ecosystem functioning and groups model pa-
rameter values estimated at site level. However, inter-site
parameter variability for analogous PFTs show limitations of
such a regionalization approach (Ibrom et al., 2006; van Dijk
et al., 2005). Parameters that show large between-site but
low temporal variability should be used to help define more
realistic PFTs than are currently applied. The spatial varia-
tion in parameters should be explicable on the basis of exter-
nal drivers such as climatic, topographic or geological vari-
ability. Model parameter regionalization approaches usually
build on remotely sensed variables as model drivers which
are providing a basis for the extrapolation of spatial patterns,
but the quantification of the FLUXNET representativeness
and heterogeneity is fundamental to assess the upscaling po-
tential of both model parameters and observed processes.

6.9 Evaluation of model deficiencies and benchmarking

One of the major interests of assimilation techniques for
modellers is in the potential to highlight model deficiencies.
For this objective, being able to include all sources of un-
certainty within a rigorous statistical framework represents
a critical advantage. Abramowitz et al. (2005, 2008, 2007)
used artificial neural networks (ANN) linking meteorological
forcing and measured fluxes to provide benchmarks against
which to assess performance of several LSMs. Performance
of the ANNs was generally superior to that of the LSMs,
which produced systematic errors in the fluxes of sensible
heat, water vapour and CO2 at five test FLUXNET sites.
These errors could not be eliminated through parameter op-
timization and it appears that structural improvements in the
LSMs are needed before their performance matches that of
the benchmark ANNs. Predictions using LSMs may be sat-
isfactory in some parts of bioclimatic space and not in others.
Abramowitz et al. (2008) used self-organizing maps to divide
climate space into a set distinct regions to help identify con-
ditions under which model bias is greatest, thereby helping
with the “detective work” of model improvement.

With conventional model-data evaluation (e.g. RMSE
analyses) there is always the risk of over-interpretation of a
particular model-data mismatch, that only reflects poor pa-
rameter calibrations. The details of these outcomes are prob-
ably only relevant to a given model structure and thus cannot
be extrapolated to other models. As an example, Fig. 10 il-
lustrates the difficulty of one model to properly capture the
amplitude of both the seasonal cycle and the summer diurnal
cycle of NEE (and not for the latent heat flux). Note that the
issue of temporal and spatial variability, discussed above, is
also relevant to this objective. However, a caution with any
parameter optimization process is not to correct for model
biases with unrealistic parameter values, by carefully evalu-
ating the posterior parameter estimates. Model failure after
optimisation identifies inadequate model structure, which ul-
timately leads to improvements in process representation and
increased confidence in the model’s projections.

7 Conclusions

There has been significant progress in LSM development, in
generating flux data with error assessments from key biomes,
and in coupling models and data for optimal analyses. We
have shown how the FLUXNET database can be used to im-
prove forecasts of global biogeochemical and climate mod-
els. MDF approaches provide a means to identify which
components of the carbon, water and energy balance are ef-
fectively constrained by current FLUXNET data and how un-
certainty grows with prognostic runs. There are now some
clear opportunities for LSM and FLUXNET communities to
develop this research.
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Our vision for the future includes: (1) identifying and
funding critical new locations for FLUXNET towers in
poorly studied biomes, for instance in tropical croplands;
(2) nesting EC towers within the regional footprints of tall
towers that sample the CO2 concentration of the planetary
boundary layer (Helliker et al., 2004) to assist upscaling;
(3) linking EC towers effectively with the atmospheric col-
umn CO2 measurements generated by the satellites OCO and
GOSAT, expected from late 2009 (Feng et al., 2008); (4)
continued linkage to optical products from remote sensing,
as these provide critical information on canopy structure and
phenology (Demarty et al., 2007); (5) use of plant functional
traits database to identify more realistic priors and to vali-
date posteriors in the data assimilation process (Luyssaert et
al., 2007). Full exploitation of this vision is dependent on
model-data fusion. Atmospheric transport models are criti-
cal for linking land surface exchanges to CO2 concentration
measurements from (2) and (3). Radiative transfer models
are vital for properly assimilating the raw optical informa-
tion from remote sensing (Quaife et al., 2008).

We have identified five major model-data fusion chal-
lenges for the FLUXNET and LSM communities to tackle,
for improved assessment of current and future land surface
exchanges of matter and energy:

– To determine appropriate use of current data and to ex-
plore the information gained in using longer time series
regarding future prediction. What can be learned from
assimilating 10+ years of EC data?

– To avoid confounding effects of missing processes in
model representation on parameter estimation.

– To assimilate more data types (e.g. pools/stocks of car-
bon, earth observation data) and to define improved ob-
servation operators. It would be valuable to determine
which biometric time series would best complement EC
data at FLUXNET sites.

– To fully quantify uncertainties arising from data bias,
model structure, and estimates of initial conditions. We
believe that MDF with multiple independent data time
series will best identify bias, and recommend a multi-
site test of this idea.

– To carefully test current model concepts (e.g. PFTs) and
guide development of new concepts. FLUXNET data
can be used to determine whether parameters need to
vary continuously in space in response to some remotely
sensed trait, following approaches applied, for instance,
by Williams et al. (2006). Thus, FLUXNET data can be
used to challenge and enrich the PFT approach, possibly
leading to a redefinition of PFTs.
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