H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop evapotranspiration ? guidelines for computing crop water requirements , Food and Agricultural Organization of the United Nations (FAO) Irrigation and Drain, 1998.

O. Andrén and T. Kätterer, ICBM: THE INTRODUCTORY CARBON BALANCE MODEL FOR EXPLORATION OF SOIL CARBON BALANCES, Ecological Applications, vol.7, issue.4, pp.1226-1236, 1997.
DOI : 10.2307/1940104

J. Balesdent, G. H. Wagner, and A. Mariotti, Soil Organic Matter Turnover in Long-term Field Experiments as Revealed by Carbon-13 Natural Abundance, Soil Science Society of America Journal, vol.52, issue.1, pp.118-124, 1988.
DOI : 10.2136/sssaj1988.03615995005200010021x

J. M. Bremner and D. S. Jenkinson, DETERMINATION OF ORGANIC CARBON IN SOIL, Journal of Soil Science, vol.37, issue.2, pp.394-402, 1960.
DOI : 10.1111/j.1365-2389.1960.tb01093.x

S. Bruun, B. T. Christensen, E. M. Hansen, J. Magid, and L. S. Jensen, Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments, Soil Biology and Biochemistry, vol.35, issue.1, pp.67-76, 2003.
DOI : 10.1016/S0038-0717(02)00237-7

H. Burgevin and S. Hénin, Dix années d'expériences sur l'action des engrais sur la composition et les propriétés d'un sol de limon, Ann. Agron, vol.9, pp.771-799, 1939.

B. Christensen, Effect of cropping system on the soil organic matter content II, Field experiments on a sandy loam, Tidsskrift for Planteavl, pp.161-169, 1956.

B. T. Christensen, Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: Revision of model structure, in: Evaluation of soil organic matter models using existing, long-term datasets, J. U., NATO ASI Series I, vol.38, pp.143-159, 1996.

B. T. Christensen and A. E. Johnston, Chapter 18 Soil organic matter and soil quality???Lessons learned from long-term experiments at Askov and Rothamsted, Dev. Soil Sci, vol.25, pp.399-430, 1997.
DOI : 10.1016/S0166-2481(97)80045-1

B. T. Christensen, J. Petersen, U. Trentemoller, and M. , The Askov Long-Term Experiments on Animal Manure and Mineral Fertilizers, Danish Institute of Agricultural Sciences, 2004.
DOI : 10.1007/978-3-642-61094-3_25

K. Coleman and D. S. Jenkinson, RothC-26.3 - A Model for the turnover of carbon in soil, J. U., NATO ASI Series I, vol.38, pp.237-246, 1996.
DOI : 10.1007/978-3-642-61094-3_17

K. Coleman, D. S. Jenkinson, G. J. Crocker, P. R. Grace, J. Klir et al., Simulating trends in soil organic carbon in long-term experiments using RothC-26, Geoderma, vol.3, pp.81-110, 1997.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, vol.408, issue.6809, pp.184-187, 2000.
DOI : 10.1038/35041539

E. A. Davidson and I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.63, issue.7081, pp.165-173, 2006.
DOI : 10.1038/nature04514

E. T. Elliott, K. Paustian, and S. D. Frey, Modeling the measurable or measuring the modelable: A hierarchical approach to isolating meaningful soil organic matter fractionations, in: Evaluation of soil organic matter models using existing, long-term datasets, J. U., NATO ASI Series I, vol.38, pp.161-179, 1996.

P. Falloon, P. Smith, K. Coleman, M. , and S. , Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model, Soil Biology and Biochemistry, vol.30, issue.8-9, pp.1207-1211, 1998.
DOI : 10.1016/S0038-0717(97)00256-3

P. Falloon and P. Smith, Modelling refractory soil organic matter, Biol. Fert. Soils, vol.30, pp.388-398, 2000.

. C. Fang, P. Smith, J. B. Moncrieff, and J. U. Smith, Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature, vol.29, issue.7021, pp.57-59, 2005.
DOI : 10.1016/S0038-0717(98)00016-9

C. Fang, P. Smith, and J. U. Smith, Is resistant soil organic matter more sensitive to temperature than the labile organic matter?, Biogeosciences, vol.3, issue.1, pp.65-6810, 2006.
DOI : 10.5194/bg-3-65-2006

URL : https://hal.archives-ouvertes.fr/hal-00297540

S. Fontaine, S. Barot, P. Barre, N. Bdioui, B. Mary et al., Stability of organic carbon in deep soil layers controlled by fresh carbon supply, and Zeng, N.: Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison, pp.277-281, 2006.
DOI : 10.1038/nature06275

URL : https://hal.archives-ouvertes.fr/bioemco-00176100

M. H. Gerzabek, F. Pichlmayer, H. Kirchmann, and G. Haberhauer, The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden, European Journal of Soil Science, vol.158, issue.2, pp.273-282, 1997.
DOI : 10.1016/0038-0717(93)90105-K

C. P. Giardina and M. G. Ryan, Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature, Nature, vol.404, issue.6780, pp.858-861, 2000.
DOI : 10.1038/35009076

M. Heimann and M. Reichstein, Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, vol.53, issue.7176, pp.289-292, 2008.
DOI : 10.1038/nature06591

S. Houot, J. A. Molina, R. Chaussod, and C. E. Clapp, Simulation by NCSOIL of Net Mineralization in Soils from the Deherain and 36 Parcelles Fields at Grignon, Soil Science Society of America Journal, vol.53, issue.2, pp.451-455, 1989.
DOI : 10.2136/sssaj1989.03615995005300020023x

R. Hyvönen, G. I. Agren, and O. Andrén, Modelling Long-Term Carbon and Nitrogen Dynamics in an Arable Soil Receiving Organic Matter, Ecological Applications, vol.6, issue.4, pp.1345-1354, 1996.
DOI : 10.2307/2269612

R. B. Jackson, J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala et al., A global analysis of root distributions for terrestrial biomes, Oecologia, vol.16, issue.3, pp.389-411, 1996.
DOI : 10.1007/BF00333714

D. S. Jenkinson, The Accumulation of Organic Matter in Soil Left Uncultivated, Rothamsted Experimental Station Report for, Lawes Agricultural Trust, vol.2, pp.113-137, 1970.

D. S. Jenkinson, P. R. Poulton, and C. Bryant, The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the Rothamsted long-term field experiments, European Journal of Soil Science, vol.19, issue.2, pp.391-399, 2008.
DOI : 10.2307/2641102

E. G. Jobaggy and R. B. Jackson, THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION, Ecological Applications, vol.10, issue.2, pp.423-436, 2000.
DOI : 10.1023/A:1005345429236

A. E. Johnston, P. R. Poulton, C. , and K. , Soil Organic Matter: its Importance in Sustainable Agriculture and Carbon www.biogeosciences, Biogeosciences, vol.3839, issue.7, pp.3839-3850, 2010.

P. Barré, Quantifying and isolating stable soil organic carbon Dioxide Fluxes, Adv. Agron, vol.101, pp.1-57, 2009.

R. H. Kelly, W. J. Parton, G. J. Crocker, P. R. Grace, J. Klir et al., Simulating trends in soil organic carbon in long-term experiments using the century model, Geoderma, vol.81, issue.1-2, pp.81-75, 1997.
DOI : 10.1016/S0016-7061(97)00082-7

R. Kiem, H. Knicker, and I. Knabner, Refractory organic carbon in particle-size fractions of arable soils I: distribution of refractory carbon between the size fractions, Organic Geochemistry, vol.33, issue.12, pp.1683-1697, 2002.
DOI : 10.1016/S0146-6380(02)00113-4

R. Kiem and I. Kögel-knabner, Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 ??m, Organic Geochemistry, vol.33, issue.12, pp.1699-1713, 2002.
DOI : 10.1016/S0146-6380(02)00112-2

H. Kirchmann, J. Persson, C. , and K. , The Ultuna long-term soil organic matter experiment, Reports and Dissertations, vol.17, 1956.

H. Kirchmann, F. Pichlmayer, and M. H. Gerzabek, Sulfur balances und Sulfur-34 abundance in a long-term ferilizer experiment, Soil Sci. Soc. Am. J, vol.59, pp.174-178, 1996.

W. Knorr, I. C. Prentice, J. I. House, and E. A. Holland, Long-term sensitivity of soil carbon turnover to warming, Nature, vol.34, issue.7023, pp.298-301, 2005.
DOI : 10.1046/j.1365-2486.2001.00412.x

V. I. Lazarev, Dynamics of agro-physical soil properties, in: Dynamics of effective fertility of chernozem under long-term agricultural use, pp.89-94, 2007.

J. Lehmann, J. Skjemstad, S. Sohi, J. Carter, M. Barson et al., Australian climate???carbon cycle feedback reduced by soil black carbon, Nature Geoscience, vol.75, issue.12, pp.832-835, 2008.
DOI : 10.1038/ngeo358

R. Morel, T. Lasnier, and P. Bourgeois, Les essais de fertilisation de longue durée de la station agronomique de Grignon, Dispositif Dehérain et des 36 Parcelles: Résultats expérimentaux Institut National de la Recherche Agronomique, p.335, 1938.

W. J. Parton, D. S. Schimel, C. V. Cole, D. Ojima, and S. , Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands1, Soil Science Society of America Journal, vol.51, issue.5, pp.1173-1179, 1987.
DOI : 10.2136/sssaj1987.03615995005100050015x

K. Paustian, W. J. Parton, and J. Persson, Modeling Soil Organic Matter in Organic-Amended and Nitrogen-Fertilized Long-Term Plots, Soil Science Society of America Journal, vol.56, issue.2, pp.476-488, 1992.
DOI : 10.2136/sssaj1992.03615995005600020023x

H. L. Penman, Natural Evaporation from Open Water, Bare Soil and Grass, Proc. R. Soc. Lon. Ser-A, pp.120-146, 1948.
DOI : 10.1098/rspa.1948.0037

A. Pernes-bebuyser and D. Tessier, Influence du pH sur les propriétés des sols : l'essai de longue durée des 42 parcellesàparcelles`parcellesà Versailles, pp.27-39, 2002.

B. M. Petersen, J. Berntsen, S. Hansen, and L. S. Jensen, CN-SIM???a model for the turnover of soil organic matter. I. Long-term carbon and radiocarbon development, Soil Biology and Biochemistry, vol.37, issue.2, pp.359-374, 2005.
DOI : 10.1016/j.soilbio.2004.08.006

A. F. Plante, M. Pernes, and C. Chenu, Changes in clay-associated organic matter quality in a C depletion sequence as measured by differential thermal analyses, Geoderma, vol.129, issue.3-4, pp.186-199, 2005.
DOI : 10.1016/j.geoderma.2004.12.043

M. Reichstein, T. Kätterer, O. Andrén, P. Ciais, E. Schulze et al., Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook, Biogeosciences, vol.2, issue.4, pp.317-32110, 2005.
DOI : 10.5194/bg-2-317-2005

URL : https://hal.archives-ouvertes.fr/hal-00330312

D. Santaren, P. Peylin, N. Viovy, C. , and P. , Optimizing a process-based ecosystem model with eddy-covariance flux measurements: A pine forest in southern France, Global Biogeochemical Cycles, vol.113, issue.3, pp.10-1029, 2007.
DOI : 10.1029/2006GB002834

URL : https://hal.archives-ouvertes.fr/bioemco-00175968

S. Sitch, C. Huntingford, N. Gedney, P. E. Levy, M. Lomas et al., Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs), Global Change Biology, vol.9, issue.9, pp.2015-2039, 2008.
DOI : 10.1111/j.1365-2486.2008.01626.x

A. Tarantola, Inverse Problem Theory: Methods of Data Fitting and Model Parameter Estimation, p.630, 1987.

S. E. Trumbore, Potential responses of soil organic carbon to global environmental change, Proceedings of the National Academy of Sciences, vol.94, issue.16, pp.8284-8291, 1997.
DOI : 10.1073/pnas.94.16.8284

V. Lützow, M. Kögel-knabner, I. Ludwig, B. Matzner, E. Flessa et al., Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model, Journal of Plant Nutrition and Soil Science, vol.38, issue.224, pp.111-124, 2008.
DOI : 10.1002/jpln.200700047