Comparison of primer sets for the study of Planctomycetes communities in lentic freshwater ecosystems

Thomas Pollet, Rémy Tadonléké, Jean-François Humbert

To cite this version:

HAL Id: bioemco-00581548
https://hal-bioemco.ccsd.cnrs.fr/bioemco-00581548
Submitted on 31 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Comparison of primer sets for the study of Planctomycetes communities in lentic freshwater ecosystems

1. Thomas Pollet1,
2. Rémy D. Tadonléké1,*,
3. Jean-F. Humbert1,2

Summary
In search of a primer set that could be used to study Planctomycetes dynamics in lakes and especially via fingerprinting methods, e.g. denaturing gradient gel electrophoresis (DGGE), three existing specific primer sets, developed for marine and soil systems, have been tested on water samples from four freshwater ecosystems. The first primer set (PLA46F/PLA886R) allowed PCR amplification of Planctomycetes sequences in only one of the four ecosystems, whereas the second primer set (PLA40F/P518R) amplified Planctomycetes sequences in all the studied ecosystems but with a low specificity, since sequences belonging to Verrucomicrobiales and Chlamydiales clades were also amplified. Finally, the third primer set (PLA352F/PLA920R) allowed amplification of Planctomycetes sequences in the four ecosystems with a very high specificity. It amplified all known Planctomycetes genera and yielded the highest Operational Taxonomic Unit (OTU) richness and diversity estimates. In silico analyses supported these results. Further experiments comparing PLA352F/PLA920R to PLA46F/P1390R (a primer set generating a longer PCR fragment, also used to study Planctomycetes) yielded very similar results. Our findings suggest that the primer set PLA352F/PLA920R provides good estimates of Planctomycetes richness and diversity compared with other, and can thus be used to study Planctomycetes dynamics in lentic freshwater ecosystems.

Introduction
The order of Planctomycetales belongs to a separate phylum in the domain bacteria on the basis of their 16S rRNA gene sequences (Schlesner and Stackebrandt, 1986; Woese, 1987). It is now known that these bacteria are ubiquitous and display several specificities in terms of cell structure (e.g. cell compartmentalization), genetics and physiology (Fuerst, 1995; Lindsay et al., 2001). These bacteria have been isolated from soils, marine and freshwater, hot springs, wastewater treatment plants and invertebrate animals (e.g. Schlesner, 1986; 1994; Giovannoni et al., 1987; Bornemann and Triplett, 1997; Fuerst et al., 1997; Axelrod et al., 2002; Pimentel-Elardo et al., 2003; Gade et al., 2004; Köhler et al., 2008). Since the discovery of the implication of Planctomycetes in the anaerobic ammonia oxidation (anammox) process (Strous et al., 1999; Kuypers et al., 2003), the number of studies dealing with these bacteria has considerably increased over years. However these studies generally concern marine ecosystems, soils, wastewater treatment plants and springs (Strous et al., 1999; Schmid et al., 2001; Chouari et al., 2003; Elshahed et al., 2007; Rich et al., 2008; Shu and Jiao, 2008; Woebken et al., 2008) and only a few studies have been carried out on these bacteria in lentic freshwater ecosystems. In the latter, Planctomycetes have been found to be involved in anammox (Schubert et al., 2006) and in change in the quality of dissolved organic matter (Tadonléké, 2007), two key processes in the functioning of aquatic systems. However while the first cited study focused on particular Planctomycetes, the second was based on fluorescence in situ hybridization, with no information on Planctomycetes composition.

In order to increase our knowledge on the structural and functional diversity of the Planctomycetes communities in freshwater ecosystems, we need to have a set of primers allowing specific amplification of this group and an evaluation of its diversity. We wanted that this primer set generates a small size fragment, which can be used in a fingerprinting approach such as denaturing gradient gel electrophoresis (DGGE), although the latter is not restricted to short fragments. In this goal, we tested three existing primer sets developed in marine and soil systems PLA40F/P518R (Derakhshi et al., 2001), PLA46F/PLA886R (Pyneart et al., 2003) and PLA352F/PLA920R (Mühling et al., 2008), and described as Planctomycetes-specific (Table 1). Our study was performed on water samples from four contrasting freshwater ecosystems (two French peri-alpine lakes, Annecy and Bourget, and two reservoirs in Burkina Faso, Bagre and Pouytenga) and was complemented by in silico analyses, which compared the theoretical performance of these primers in the context of the current Ribosomal Database Project (RDP) database. Finally, we compared the results provided by the best primer set with those obtained with a primer set (PLA46F/P1390R) generating a longer fragment, and used by other authors to study Planctomycetes (Chouari et al., 2003).
Table 1. Planctomycetes-specific 16S rRNA gene PCR primer sets used in this study and conditions of each PCR reaction.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Target group</th>
<th>Sequences (5′–3′)</th>
<th>PCR conditions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. of cycles</td>
<td>Denaturation Temp (°C)</td>
<td>Annealing Temp (°C)</td>
</tr>
<tr>
<td>PLA46F</td>
<td>Planctomycetes</td>
<td>GGA TTA GGC TTA</td>
<td>30 96 1 58 1 74 1</td>
<td>Mühling et al. (2008)</td>
</tr>
<tr>
<td>PLA886R</td>
<td>Planctomycetes</td>
<td>CGA CCA TAC TCC</td>
<td>30 95 1 56 1 72 2</td>
<td>Pyneart et al. (2003)</td>
</tr>
<tr>
<td>P518R</td>
<td>Eubacteria</td>
<td>GCG GCT GCT GG</td>
<td>30 94 0.5 60 1 72 2</td>
<td>Boon et al. (2000); Derakhani et al. (2001)</td>
</tr>
</tbody>
</table>

1. For DNA extraction and PCR amplification, 250 ml of water sample from each lake was first filtered through a 2-µm-pore-size polycarbonate membrane filter (Nuclepore) to eliminate larger eukaryotes. The bacterioplankton remaining in the filtrate was then collected, through a gentle filtration, on a 0.2-µm-pore-size polycarbonate membrane filters (Nucleopore). Nucleic acid extraction was carried out as described in Dorigo and colleagues (2006). PCR amplifications were performed with the PTC-100™ Thermal Cycler (MJ Research) using three sets of primers (PLA46F/PLA886R, Pyneart et al., 2003; PLA40F/P518R, Derakhani et al., 2001; and PLA352F/PLA920R, Mühling et al., 2008). To compare the two sets of primers PLA352F/PLA920R and PLA46F/P1390R, PCR amplifications have been performed only on water samples from the Lake Bourget (referred to as ‘Bourget 2’). For each primer set, a range of annealing temperatures was tested to determine empirically the temperature that resulted in the most specific PCR product.
Table 1. Planctomycetes-specific 16S rRNA gene PCR primer sets used in this study and conditions of each PCR reaction.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Target group</th>
<th>Sequences (5′→3′)</th>
<th>No. of cycles</th>
<th>PCR conditions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Denaturation temperature (°C)</td>
<td>Annealing temperature (°C)</td>
<td>Elongation temperature (°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time (min)</td>
<td>Time (min)</td>
<td>Time (min)</td>
</tr>
<tr>
<td>PLA46F</td>
<td>Planctomycetales</td>
<td>GGA TTA GCC ATG CAA GTC GCA CCA TAC TCC</td>
<td>46–63</td>
<td>2838</td>
<td>30</td>
</tr>
<tr>
<td>PLA886R</td>
<td>Planctomycetales</td>
<td>CGG CRT GGA TTA GCC ATG ATT ACC GGG GCT GCT GG GCC TGC AGT CGA GRA TCT TGT GTG AGC CCC CGT CAA</td>
<td>886–904</td>
<td>4574</td>
<td>48</td>
</tr>
<tr>
<td>PLA40F</td>
<td>Planctomycetales</td>
<td></td>
<td>40–57</td>
<td>2446</td>
<td>26</td>
</tr>
<tr>
<td>P518R</td>
<td>Eubacteria</td>
<td>GGG GCT GCT GG GCC TGC AGT CGA GRA TCT TGT GTG AGC CCC CGT CAA</td>
<td>518–534</td>
<td>1784</td>
<td>18</td>
</tr>
<tr>
<td>PLA352F</td>
<td>Planctomycetales</td>
<td>AGT CGA GAC GTC TGC TGT GTG AGC CCC CGT CAA</td>
<td>350–367</td>
<td>5684</td>
<td>60</td>
</tr>
<tr>
<td>PLA920R</td>
<td>Planctomycetales</td>
<td></td>
<td>920–937</td>
<td>4973</td>
<td>52</td>
</tr>
</tbody>
</table>

Results and discussion

Efficacy and ability of each primer set to amplify Planctomycetes sequences

The in silico analyses (theoretical approach) using the RDP database showed that the forward and the reverse of the primer set PLA352F/PLA920R matched with a higher number of Planctomycetes sequences (60% and 52% respectively), and also exhibited lower percentages of match outside this bacterial group than the forward and the reverse from the two others primer sets (Table 2). It is, however, important to note that in spite of a good specificity of primers obtained by theoretical analysis, experimental analyses are necessary and can reveal a high degree of non-specificity (Morales and Holben, 2009).

Table 2. Planctomycetes-specific 16S rRNA gene PCR primers used in this study and their specificity revealed by the in silico analysis.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Target group</th>
<th>Sequence (5′→3′)</th>
<th>Escherichia coli position</th>
<th>Identical matches within the target group</th>
<th>Percentage matches within the target group compared with all Planctomycetes sequences</th>
<th>Percentage matches within the target group compared with total hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA46F</td>
<td>Planctomycetales</td>
<td>GGA TTA GCC ATG CAA GTC GCA CCA TAC TCC</td>
<td>46–63</td>
<td>2838</td>
<td>30</td>
<td>77</td>
</tr>
<tr>
<td>PLA886R</td>
<td>Planctomycetales</td>
<td>CGG CRT GGA TTA GCC ATG ATT ACC GGG GCT GCT GG GCC TGC AGT CGA GRA TCT TGT GTG AGC CCC CGT CAA</td>
<td>886–904</td>
<td>4574</td>
<td>48</td>
<td>95</td>
</tr>
<tr>
<td>PLA40F</td>
<td>Planctomycetales</td>
<td></td>
<td>40–57</td>
<td>2446</td>
<td>26</td>
<td>86</td>
</tr>
<tr>
<td>P518R</td>
<td>Eubacteria</td>
<td>GGG GCT GCT GG GCC TGC AGT CGA GRA TCT TGT GTG AGC CCC CGT CAA</td>
<td>518–534</td>
<td>1784</td>
<td>18</td>
<td>0.24</td>
</tr>
<tr>
<td>PLA352F</td>
<td>Planctomycetales</td>
<td>AGT CGA GAC GTC TGC TGT GTG AGC CCC CGT CAA</td>
<td>350–367</td>
<td>5684</td>
<td>60</td>
<td>91</td>
</tr>
<tr>
<td>PLA920R</td>
<td>Planctomycetales</td>
<td></td>
<td>920–937</td>
<td>4973</td>
<td>52</td>
<td>99</td>
</tr>
</tbody>
</table>

- a.
 - A total of 9488 Planctomycetes sequences were available in the RDP database.
 - The theoretical performance of each PCR primer was tested (in silico analyses) using the ‘Probe Match’ function within the Ribosomal Database Project (RDP) (Cole et al., 2005).
Very contrasting results were found in the PCR efficiency and specificity using the first three primer sets tested. The primer set PLA46F/PLA886R allowed amplification of Planctomycetes sequences (100% of sequences obtained belonged to Planctomycetes order) but only in Lake Bourget. No amplification was obtained with this primer set for samples from the three other ecosystems (Table 3). This primer set has previously been used to estimate the Planctomycetes diversity in marine environments and in digesters of wastewater treatment plants (Pynnet et al., 2003; Shu and Jiao, 2008). Previous studies indicated that a low specificity of the primers and a poor efficacy of the PCR reaction can yield poor amplification (Becker et al., 2000), as found with this primer set in our study. Moreover, recent studies (Brau et al., 2008; Wu et al., 2009) have shown that single mismatch in the regions where primers bind onto the template strands can also greatly affect the PCR efficacy. This set of primers might thus be able to detect and amplify only a restricted number of Planctomycetes sequences among those present in freshwater ecosystems. In a recent review, Amann and Fuchs (2008) reported that the coverage of the probe PLA46 was 44% (559 of 1271) of the Planctomycetes 16S rRNA sequences in the SILVA database. Our in silico analysis in the context of a larger database (RDP) indicates a lower coverage (30%) for the PLA46F as a primer for this bacterial group (Table 2).

Table 3. Analysis of the 16S rDNA diversity (Chao1 estimator, total number of sequences, number of Planctomycetes sequences and OTUs and percentage of Planctomycetes sequences) for each primer set and lake.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Lakes</th>
<th>Total number of sequences</th>
<th>Number of Planctomycetes Sequences</th>
<th>Chao1 estimates (±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTUs</td>
<td></td>
</tr>
<tr>
<td>PLA46F/PLA886R</td>
<td>Annecy</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Bagre 1</td>
<td>94</td>
<td>94</td>
<td>10 (1.29)</td>
</tr>
<tr>
<td></td>
<td>Pouyetenga</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PLA40F/P518R</td>
<td>Annecy</td>
<td>26</td>
<td>5</td>
<td>5 ND</td>
</tr>
<tr>
<td></td>
<td>Bagre 1</td>
<td>72</td>
<td>48</td>
<td>12 (7.04)</td>
</tr>
<tr>
<td></td>
<td>Pouyetenga</td>
<td>57</td>
<td>55</td>
<td>2 (0)</td>
</tr>
<tr>
<td>PLA352F/PLA920R</td>
<td>Bourget 2</td>
<td>90</td>
<td>89</td>
<td>6 (2.19)</td>
</tr>
<tr>
<td></td>
<td>Bagre</td>
<td>88</td>
<td>84</td>
<td>26 (4.21)</td>
</tr>
<tr>
<td></td>
<td>Pouyetenga</td>
<td>88</td>
<td>86</td>
<td>5 (0)</td>
</tr>
<tr>
<td>PLA46F/P1390R</td>
<td>Bourget 2</td>
<td>78</td>
<td>76</td>
<td>7 (2.22)</td>
</tr>
</tbody>
</table>

The second primer set, PLA40F/P518R, allowed to amplify Planctomycetes sequences in the four lakes but the specificity of the amplification varied considerably (Table 3). The proportion of sequences belonging to Planctomycetes ranged from a value as low as 13% in Lake Annecy to 96% in the reservoir Pouyetenga, intermediate values being found in Lake Bourget (51%) and in the reservoir Bagre (67%). This primer set amplified members of other bacterial orders, which are phylogenetically close to Planctomycetes, namely Verrucomicrobiales and Parachlamydiales (13% and 9% of the total of sequences respectively) in Lake Annecy, and Chlamydiales (6% of all sequences) in the reservoir Bagre. This lack of Planctomycetes specificity has previously been reported for the primer PLA40F in soils and rice roots (Derakhshi et al., 2001). These authors pointed out that PLA40F revealed no mismatch for almost all Planctomycetes and only a very few mismatches for members of the Verrucomicrobia and some Chlamydia. Our results suggest that the primer set PLA40F/P518R might not be suitable for study of freshwater planktonic Planctomycetes, especially in the framework of fingerprinting approach on these communities.
The third primer set tested (PLA352F/PLA920R) provided the best results in term of specificity and efficiency (Table 3). Indeed, a positive PCR amplification was obtained in all sampling sites and almost all the sequences (> 97%) belonged to the Planctomycetes phylum. The remaining sequences (< 3%) belonged to a group of ‘unclassified bacteria’.

Operational Taxonomic Unit (OTU) richness found in the Planctomycetes communities using the three sets of primers

The number of Planctomycetes Operational Taxonomic Units (OTUs) identified in the samples from the four ecosystems with the different primer sets did not differ significantly from the values of the Chao1 estimator (Sign test, \(P = 0.25 \), Table 3), showing that we obtained a sufficient number of sequences to evaluate the Planctomycetes OTU richness in our samples. This finding was confirmed by the rarefaction curves which were asymptotic in most cases (not shown). Finally it appeared for the same primer set that there were large variations in the richness index between the samples from the four ecosystems (Table 3). Compared with the two others, the primer set PLA352F/PLA920R allowed to obtain higher numbers of OTUs and higher values of the Chao1 index in almost all cases (Table 3). This suggests that the primer set PLA352F/PLA920R was able to amplify a larger set of Planctomycetes sequences than the two others, and that the latter underestimated the richness of the Planctomycetes community. These results were supported by the in silico analyses, which revealed only a few sequences detected by PLA352F/PLA920R outside the group of Planctomycetes in the context of RDP (Table 2). As pointed out in previous works (Lueders and Friedrich, 2003), our findings confirmed that it is necessary to perform a careful evaluation of the PCR primers used to assess the diversity in microbial communities. Hence, the primer set PLA352F/PLA920R seemed to provide the best compromise considering the ability to obtain a positive PCR amplification, the specificity of the amplification and the ability to detect a large number of OTUs within the Planctomycetes communities.

Planctomycetes diversity obtained using PLA352F/PLA920R versus PLA46F/P1390R

Based on the above results, further experiments were performed to compare results obtained with PLA352F/PLA920R with those found with the primer set PLA46F/P1390R (Chouari et al., 2003). PLA352F/PLA920R generates a short enough PCR fragments (568 bp) to be used in DGGE (Mühling et al., 2008), one of the most used fingerprinting approach. PLA46F/P1390R allows amplification of a 1344 bp fragment and has been used to study Planctomycetes communities in waste water treatment plants (Chouari et al., 2003). The comparison was performed on a sample from Lake Bourget (Bourget 2). Results showed that the two primer sets presented a high specificity to Planctomycetes, as 99% and 98% of sequences obtained with PLA352F/PLA920R and PLA46F/P1390R, respectively, belonged to Planctomycetes. The number of OTUs (5 and 6) and the composition of the Planctomycetes community amplified by these two primer sets were very similar (Table 3). In addition, these two primer sets yielded similar values for the Chao1 (Table 3). This indicated that, despite the smaller size of PCR fragments generated by PLA352F/PLA920R, the latter did not underestimate Planctomycetes diversity, in our samples, compared with PLA46F/P1390R.

Phylogenetic analysis of the sequences obtained with the primers PLA352F/PLA920R

Based on the above results, a phylogenetic analysis was performed with data obtained with PLA352F/PLA920R. To date, seven cultured genera of Planctomycetes (Planctomyces, Gemmata, Isosphaera, Pirellula, Schlesneria, Singulisphaera and Zavarzinella) have been described (Staley et al., 1992; Kulichevskaya et al., 2007; 2008; 2009) but several additional Candidatus genera (Brocadia, Kuenenia, Scalindua, Annamoxoglobus and Jettenia) playing a key role in the anammox process (Strous et al., 1999; Kuypers et al., 2003; Kartal et al., 2007; Schmid et al., 2007; Quan et al., 2008) have recently been proposed. Among the 437 Planctomycetes sequences obtained with the primer set PLA352F/PLA920R in our four sampling sites, 39 OTUs displaying a ≥ 98% sequence identity were identified. Thirty-eight of these OTUs were distributed in four clusters containing all Planctomycetes genera [cluster I (Pirellula/Blastopirellula), cluster II (Planctomyces/Schlesneria), cluster III (Isosphaera/Singulisphaera) and cluster IV (Gemmata/Zavarzinella)]. This indicated that the primers PLA352F/PLA920R were able to amplify members of all the Planctomycetes genera currently described (Fig. 1). Among these 38 OTUs, 20 (~53%) belonged to cluster I, which comprises Pirellula/Blastopirellula genera. A high diversity of the Pirellula genus and its dominance within Planctomycetes communities have been reported by previous studies in other freshwater environments, namely wastewater treatment plants and river biofilms (Chouari et al., 2003; Brümmer et al., 2004). Our results, together with those from these previous studies, suggest that members of this genus are probably well adapted to freshwater ecosystems and might play a particular role in these environments.

One OTU (OTU 28), amplified in the reservoir Bagre, showed a high degree of similarity with sequences belonging to anammox Planctomycetes (Fig. 1). This suggests that the primer set PLA352F/PLA920R is potentially able to detect and amplify freshwater Planctomycetes involved in anaerobic ammonium oxidizing processes. This may be of interest even though obtaining of a better representation of anammox organisms when they are present might require primer specific to these organisms (Schmid et al., 2005). The existence of anoxic
microzones in detrital aggregates (Shanks and Reeder, 1993) might be a factor allowing the presence of anammox bacteria in oxygenated water columns, as found in this study. All the sequences sharing ≥ 98% sequence identity with sequences from GenBank were closely related to environmental sequences and not to cultivated organisms. In addition, 46% of the OTUs displayed sequence similarity < 98% with sequences from GenBank® database (Table S1), which confirmed that the Planctomycetes from freshwater ecosystems are still poorly known. As previously found for dominant phyla in freshwater communities (Humbert et al., 2009), the fact that best blast hits were all obtained with sequences from freshwater habitats (lakes, rivers and reservoirs) seems to support the conclusions of Brümmer and colleagues (2004) suggesting that Planctomycetes species from freshwaters are different from those from marine environments.

In conclusion, we propose that at the current state of knowledge, the primer set PLA352F/PLA920R could be used to study pelagic Planctomycetes in freshwater ecosystems specifically via fingerprinting methods.

Acknowledgements

This work is part of the fulfilment of the requirements for a PhD (Doctorat d'Université) degree by T.P., who was supported by a French ministry of research doctoral grant to R.D.T. The study was partly supported by funding from the ‘Cluster Environnement’ of the Rhône-Alpes Region (France) to R.D.T. We are grateful to all the colleagues involved in the sampling campaign in Burkina Faso (P. Cecchi, M. Bouvy and B. Le Berre) and the IRD (Research Unit 167) for funding this campaign. We would like also to thank Ursula Dorigo who has been involved in the sampling and in the DNA extraction for Lakes Bourget (Bourget 1) and Annecy.

References

Direct Link:

Direct Link:

Direct Link

Direct Link:

