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l’énergie atomique et aux énergies alternatives-Génoscope, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8030, Evry, France

Abstract

Microcystis aeruginosa is one of the most common bloom-forming cyanobacteria in freshwater ecosystems worldwide. This
species produces numerous secondary metabolites, including microcystins, which are harmful to human health. We
sequenced the genomes of ten strains of M. aeruginosa in order to explore the genomic basis of their ability to occupy
varied environments and proliferate. Our findings show that M. aeruginosa genomes are characterized by having a large
open pangenome, and that each genome contains similar proportions of core and flexible genes. By comparing the GC
content of each gene to the mean value of the whole genome, we estimated that in each genome, around 11% of the
genes seem to result from recent horizontal gene transfer events. Moreover, several large gene clusters resulting from HGT
(up to 19 kb) have been found, illustrating the ability of this species to integrate such large DNA molecules. It appeared also
that all M. aeruginosa displays a large genomic plasticity, which is characterized by a high proportion of repeat sequences
and by low synteny values between the strains. Finally, we identified 13 secondary metabolite gene clusters, including three
new putative clusters. When comparing the genomes of Microcystis and Prochlorococcus, one of the dominant
picocyanobacteria living in marine ecosystems, our findings show that they are characterized by having almost opposite
evolutionary strategies, both of which have led to ecological success in their respective environments.
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Introduction

Cyanobacteria play an important role in aquatic ecosystems

(e.g. [1,2]) but they can also disrupt the functioning of these

ecosystems and their use by humans, because of the ability of

several species to proliferate and to produce harmful toxins (e.g.

[3]). In recent years, several studies have shown that sharply

contrasting ecological strategies have allowed cyanobacteria to live

in a large range of habitats in the euphotic zone of aquatic

ecosystems. For example, in Prochlorococcus marinus, one of the

dominant picocyanobacterial genera in marine ecosystems,

different ecotypes occupy various ecological niches mainly defined

by the availability of nutrients and light [4–7]. In contrast, in

Microcystis aeruginosa, one of the most common toxic bloom-forming

species in eutrophic freshwater ecosystems, no evidence of ecotype

differentiation has been found. Moreover, population genetic

studies have revealed that M. aeruginosa populations are character-

ized by wide genetic diversity and the lack of biogeographical

patterns of genetic differentiation, suggesting that M. aeruginosa

strains are able to proliferate in a wide range of ecosystems [8,9].

Hence, one exciting scientific challenge is to elucidate the

genomic basis of the different ecological strategies developed by

the Prochlorococcus and Microcystis genera. With this goal, the

genomes of many P. marinus strains have recently been sequenced

(for a review, see [10]). These studies have indicated that almost all

sequenced P. marinus genomes are characterized by a small size

that seems to result from a genome reduction process. However,

despite their small size, these genomes have acquired a large

number of genes by horizontal gene transfer (HGT) [11–15].

Thus, the combination of a niche specialization process involving

genome reduction [16,17], and a high adaptive potential with gene

acquisition by HGT, might explain the ecological success of this

species.

In contrast to Prochlorococcus, only two M. aeruginosa strains have

been sequenced so far. From these first two studies, M. aeruginosa

genomes appear to display unusual plasticity, reflected in a large

number of repeated sequences and low synteny values between
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them [18,19], but these findings should be confirmed on a greater

number of strains. In addition, data are needed about the size of

the core and pangenome and on the impact of HGT events on the

ability of members of this species to colonize various environ-

ments. In this goal, we sequenced the genomes of ten other M.

aeruginosa strains, selected on their phylogenetic relatedness, their

geographical origins, and their ability to produce various

secondary metabolites.

Materials and Methods

M. aeruginosa strain culture and DNA isolation
Axenic strains of M. aeruginosa were from the Pasteur Culture

collection of Cyanobacteria (PCC) and from the NIES collection

(T1-4). Cells were grown at 25uC in BG110 supplemented with

2 mM NaNO3 and 10 mM NaHCO3 [20]. They were harvested

by centrifugation (10,000 g, 10 min, 18uC), washed twice with

sterile distilled water, and kept frozen until DNA extraction.

DNA extraction from the frozen pellets was carried out using

Genomic DNA isolation-NucleoBond H AX (Macherey-Nagel,

Hoerdt, France) according to the manufacturer’s instructions.

Sequencing and assembling methods
The sequences of the ten M. aeruginosa genomes were obtained

by combining several approaches. First, a single read library was

constructed for each of the ten M. aeruginosa strains and sequenced

with the GSflex version (250 nt length), until 16 to 25-fold

coverage was obtained. Then, 3 to 8-fold coverage 454 Titanium

reads (average 450 nt length), obtained from mate-paired libraries

with 2–3 kb or 6–8 kb insert sizes, were added. In agreement with

other de novo sequencing projects, the percentage of 454 reads used

for assembly was approximately 97% and the percentage of

Illumina reads used for error correction around 93%. The

assembly was performed using Newbler Software (v2.3, Roche).

All sequences, which were not included in scaffolds after the

assembly process and which displayed a $500 bp length, were

considered to be scaffolds (see Table S1). In order to improve the

quality of the sequences, Illumina reads (51 nt length) were

mapped onto all the scaffolds, using SOAP (http://soap.genomics.

org.cn) as described by Aury et al. [21].

Both coding sequence prediction and automatic annotation

were performed by using the Microscope platform, a web-based

framework for the systematic and efficient revision of microbial

genome annotation (http://www.genoscope.cns.fr/agc/

microscope) [22]. Expert validations were carried out for specific

genes. This platform was also used for the comparative genome

analyses performed on the twelve Microcystis genomes and on those

of other cyanobacterial species.

The overall characteristics of the ten M. aeruginosa genomes are

reported in Table S1. Despite high genome coverage values, from

27 to 121 scaffolds were obtained per strain at the end of the

assembly. The number of scaffolds was positively correlated to the

size of the genomes (Spearman test, P,0.05).

Phylogenetic analyses
We used two datasets to reconstruct phylogenetic relationships

between twelve M. aeruginosa strains (the ten newly sequenced ones

and two publicly available ones, PCC 7806 and NIES-843): (i)

seven housekeeping genes used by Tanabe et al. [23], and (ii) 1989

genes from the core genome of the twelve M. aeruginosa strains.

These 1989 genes among the 2462 core genes correspond to the

orthologous genes displaying at least 80% sequence identity over

at least 80% of the length of the smallest protein. Before

concatenation, the homologous sequences of each gene were

aligned using the MUSCLE software with default parameters [24]

and the alignments were filtered by using the program GBLOCKS

allowing half gap positions [25].

For each dataset, we computed trees using PHYML [26] and

we used the Jones–Taylor–Thornton model of amino acid

substitution for the protein dataset (core genes), and the Gamma

Time Reversible model for the nucleic dataset (housekeeping

genes). Heterogeneities between sites were estimated using

gamma-distributed rate variation (4 categories), the alpha param-

eter was computed using PHYML, tree topologies were explored

using Nearest Neighbor Interchanges and we used the tlr option to

optimise the topology, the branch lengths and rate parameters of

the starting trees. One hundred bootstrap replicates were

performed to assess the statistical support of each node.

Bioinformatic analyses
All the bioinformatics analyses were performed by using tools

provided by the MicroScope platform [22].

The orthoMCL program (version 1.4), which uses a Markov

Cluster algorithm, was used to compute the core and the

pangenome of M. aeruginosa. Putative orthologies were defined as

gene pairs satisfying an alignment threshold of at least 50% amino

acid sequence identity over at least 50% of the length of the

smallest protein.

The proportion of repeats was estimated using the Repseek

algorithm. This algorithm is a fast two-step method (seed detection

followed by their extensions), which allows finding large degen-

erate repeats within or between large DNA sequences [27].

The synteny values representing the percentage of CDSs

belonging to a synteny group were estimated by taking into

account CDSs sharing at least 35% sequence identity on 80% of

the length of the smallest protein, with a gap parameter (number of

consecutive genes not involved in synteny), which was set to five.

Finally, the evaluation of horizontal gene transfers was

performed (i) by estimating the proportion of genes displaying

more than 20% difference in their GC content compared to the

mean GC content of the whole genome, and (ii) by the

implementation of Interpolated Variable Order Motifs (IVOMs),

which exploits compositional biases using variable order motif

distributions (2mer to 8mer). This implementation was achieved

by using the Alien-Hunter application included in the MicroScope

platform.

Secondary metabolites gene cluster identification
A modified version of the complete genome scanning pipeline

for searching secondary metabolites (http://nrps.igs.umaryland.

edu/nrps/2metdb/) implemented on the Microscope platform

was used to detect NRPS/PKS genes [28]. Each gene within a

cluster was compared to its syntenic counterpart at the amino-acid

level in the reference genome to obtain the deduced amino-acid

sequence identity. The genome of the M. aeruginosa strain PCC

7806 [19] was used as reference but when the compared gene

cluster was absent from this genome, those of PCC 7941, PCC

9432, PCC 9806 and NIES-843 [18] or the gene cluster psm3

from Microcystis sp. K139 [29] were used. Adenylation specificity

was checked using online NRPS predictor (http://www-ab.

informatik.uni-tuebingen.de/software/NRPSpredictor; [30]).

Results

General features of the ten M. aeruginosa genomes
The size of the ten new M. aeruginosa genomes ranged from 4.2

to 5.2 Mbp. The GC-content value was around 43% for each of

the genomes, and the Coding DNA Sequence (CDS) density of

Genomes of Ten Microcystis Strains
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,81% with approximately one gene per kb. From one to five

tRNA genes were found for each of the 20 amino acids in all the

M. aeruginosa genomes, with differences in the number of copies for

tRNA-Thr, tRNA-Ile and tRNA-Met (Table S2). By performing a

PCA analysis on the main characteristics of the twelve M. aeruginosa

genomes described in Table 1 (data not shown), the NIES-843

genome was clearly distinguishable from all the other genomes.

Finally, a comparison of the composition of the Minimal Gene Set

[31] was performed on all the M. aeruginosa genomes with the goal

to evaluate the quality of the ten new sequenced ones. Among the

205 genes composing this Minimal Gene Set, none of the genes

found in NIES-843 [18] and in PCC7806 [19] was lacking in only

one of the ten new genomes (Table S3). A restricted number of

them displayed a heterogeneous distribution among the twelve

strains, as for example pgi (phosphoglucose isomerase), which was

found in two copies in the two strains belonging to the sub-clade 1

(see bellow), and only in one copy in the other ones.

Estimation of the core and pangenome in M. aeruginosa
As shown in Fig. 1B, the size of the core genome is close to 2462

genes (Table S4). As this curve is not completely asymptotic, the

addition of new genomes would probably reduce slightly the size of

the M. aeruginosa core genome. With regard to the pangenome, the

gene accumulation curve does not reach a plateau, indicating that

its size (.12000 genes) is largely underestimated (Fig. 1A).

When looking at distribution of the core and flexible genes

classified among the Clusters of Orthologous Groups (COGs)

categories, it appeared that a smaller proportion of flexible genes

was found in C (Energy production and conversion), F (Nucleotide

transport and metabolism), H (Coenzyme metabolism), J (Trans-

lation, ribosomal structure and biogenesis) and M (Cell envelope

biogenesis, outer membrane) categories, compared to that of core

genes. In contrast, this proportion of flexible genes is high in the L

category (DNA replication, recombination and repair) due to the

presence of numerous transposase encoding genes, and also in R

(General function prediction only) and S (Unknown function)

categories (Fig. 2; Table S4).

Phylogenetic studies of the twelve M. aeruginosa strains
and relationships with their geographical origin and their
genome size

A phylogenetic analysis was performed on seven housekeeping

genes (ftsZ, glnA, gltX, gyrB, pgi, recA and tpi) and on 1989 genes

belonging to the core genome. The two trees were congruent, but

phylogenetic analysis based on the core genome enhanced the

differentiation of subclades (SC) 3 and 4 (Fig. 3). These two trees

were also compared to the tree based on the sequence of the 16S–

23S rDNA Internal Transcribed Spacer (ITS) (Figure S1). Once

again, good overall congruence was found between all these trees,

apart from the PCC 9717 strain, which moved from SC3 to SC1

in the ITS tree. Regarding the geographical origin of the strains, it

appeared that three subclades (SC2–SC4) contained strains

isolated from various continents, suggesting a worldwide distribu-

tion of these strains. In contrast, SC1 only contained the two

African strains, suggesting a possibly more limited distribution of

this subclade.

Finally, to determine whether there was any relationship

between the phylogenetic position of the strains and the size of

their genome, we performed a Kruskal-Wallis analysis in which we

compared the four subclades with regard to the number of CDS in

the genome of each strain contained in these subclades. A

statistical difference was found at a 7% level, suggesting that a

putative link between the phylogenetic position of the strains and

the size of their genome might have been found if a larger sample

of strains in each of the four subclades had been available.

Proportion of repeated sequences
The proportion of repeats (see M&M) was carried out on the

twelve M. aeruginosa genomes plus a selection of 18 cyanobacterial

genomes available in our database. From this analysis, it appears

that all the M. aeruginosa genomes displayed a higher proportion of

repeated sequences than the other cyanobacterial genomes

selected for this comparison (Fig. 4). Moreover, the slope of the

regression line between the size of the genomes and the proportion

of their repeats was much steeper for M. aeruginosa genomes than

for the others, with NIES-843 and PCC 7806 displaying the

highest proportions of repeats.

We also estimated the number of replicated CDS in the twelve

Microcystis genomes by taking into account two amino-acid

sequence similarity levels (70 and 90%). A highly significant

relationship was found between the number of CDS they

contained and the number of repeated CDS (r2
Pearson = 0.87,

p,0.0001 at 70% sequence similarity; r2
Pearson = 0.82, p,0.0001

at 90% sequence similarity level).

Synteny analysis
The synteny values between the twelve M. aeruginosa genomes

range from 67% to 86% (mean value 7664%). In order to find out

whether the synteny values estimated between the twelve genomes

match with the phylogenetic relationships of the corresponding

strains, we performed a non-metric MDS analysis on the matrix of

these values (Fig. S2). From this figure, it appears that the strains

belonging to SC1 and SC2 are clearly distinguished from those

belonging to SC3 and SC4. Interestingly, the three strains

belonging to SC4, which form the longest branches of the

phylogenetic trees (Fig. 3), are the ones most widely scattered in

the MDS scatterplot. We could conclude that the phylogenetic

diversification of M. aeruginosa was accompanied by chromosome

rearrangements leading to a rapid decrease in synteny.

As expected, the largest synteny group shared by the twelve M.

aeruginosa genomes contains genes encoding ribosomal proteins. It

is worth noting here that the second largest group comprises

eleven genes involved in the transport of various nutrients, such as

the gene clusters cmpABCD and nrtABCD encoding the ABC

transporter complex for bicarbonate and that for nitrate,

respectively, as well as several genes (including pstS, pstB, pstC)

involved in the transport of phosphate.

Evaluation of horizontal gene transfer
All the Microcystis genomes contained around 11% of genes

displaying more than 20% difference in their GC content

compared to the mean GC content of the whole genome (Fig. 5;

Table S5). This proportion is intermediate between the high

percentage (.17%) of these genes found in the genomes of

Prochlorococcus marinus (AS9601, MIT 9301) and Trichodesmium

erythraeum (IMS101), and the lowest percentage (,3%) found in

Synechococcus elongatus PCC 6301.

From 106 to 247 IVOMs were found in the M. aeruginosa

genomes. No relationship was found between the number of

IVOMs and the size of the genome (or the number of CDSs) when

we considered only the ten new genomes and the PCC 7806

strain. However, a positive correlation was found when the NIES-

843 genome was included in the analysis. This correlation might

be due to the fact that the NIES-843 genome is larger and contains

a huge number (247) of IVOMs.

Parallel to the analysis of horizontal transfer of genetic

information, we looked for genes that are strain-specific among

Genomes of Ten Microcystis Strains
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Figure 1. Estimation of the sizes of the pangenome (A) and core genome (B) of Microcystis aeruginosa from the twelve Microcystis aeruginosa
genomes (including the two previously-available genomes of PCC 7806 and NIES-843). The upper and lower edges of the boxes indicate the first
quartile and third quartile, respectively, of all different input orders (1000) of the genomes. The central horizontal line indicates the sample median
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the twelve M. aeruginosa genomes. From 100 to 225 strain-specific

genes were found in eleven of the M. aeruginosa genomes, and as

many as 805 in NIES-843. Less than 10% of these strain-specific

genes displayed over 40% identity between their deduced amino

acid sequences and sequences from the Swissprot database.

Among them, we found for example, in PCC 7806, a strain-

specific cluster (IPF 1564–1566) containing three genes involved in

the biosynthesis of sucrose (sppA, susA and spsA). These three genes

displayed a 40–70% amino-acid sequence identity with sequences

found in various cyanobacterial genera (e.g. Nodularia, Nostoc,

Cyanothece…). As expected, we found in T1-4, the only strain

among the 12 sequenced Microcystis, which synthesizes phycoer-

ythrin [32], the genes required for the biosynthesis of this red

phycobiliprotein and those involved in the regulation of their

expression (data not shown). A 19-kb gene cluster (IPF_1564–

1566) encoding for unknown proteins was identified only in the M.

aeruginosa PCC 9808 genome. This cluster was also found with a

similar physical organization and high amino acid sequence

identities, in Lyngbya majuscula 3L (Cyanobacteria; Taxonomy ID:

489825) and Herpetosiphon aurantiacus DSM 785 (Chloroflexi; Taxon-

omy ID: 316274) (Fig. S3), and with lower amino acid sequence

identities in the genomes of several proteobacteria and of two

Archaea. All the genes belonging to these three clusters display a

20% deviation in their GC content, compared to the mean GC

content of the genome of the strains in which they have been

found.

(50th percentile). The central vertical lines extend above and below each box as far as the data extend, to a distance of at most 1.5 times the
interquartile range.
doi:10.1371/journal.pone.0070747.g001

Figure 2. Distribution of the core and flexible genes from all the Microcystis genomes in the Clusters of Orthologous Groups (COGs).
Only the COG categories containing .1% of the genes in at least one of the two core genomes, are shown in the figure. The functional classifications
of the COGs are: Cellular process and signaling: (D) Cell cycle control, cell division, chromosome partitioning; (M) Cell wall/membrane/envelope
biogenesis; (N) Cell motility (O) Post-translational modification, protein turnover, and chaperones; (T) Signal transduction mechanisms; (U)
Intracellular trafficking, secretion, and vesicular transport; (V) Defense mechanisms; (W) Extracellular structures; (Y) Nuclear structure; (Z) Cytoskeleton.
Information storage and processing: (J) Translation, ribosomal structure and biogenesis; (K) Transcription; (L) Replication, recombination and
repair. Metabolism: (C) Energy production and conversion; (E) Amino acid transport and metabolism; (F) Nucleotide transport and metabolism; (G)
Carbohydrate transport and metabolism; (H) Coenzyme transport and metabolism; (I) Lipid transport and metabolism; (P) Inorganic ion transport and
metabolism; (Q) Secondary metabolites biosynthesis, transport, and catabolism. Poorly characterized: (R) General function prediction only; (S)
Function unknown.
doi:10.1371/journal.pone.0070747.g002
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Secondary metabolites
Eleven gene clusters encoding non-ribosomal peptide synthetase

(NRPS) and/or polyketide synthase (PKS), and two ribosomal

ones predicted to be involved in the biosynthesis of secondary

metabolites, were found among the Microcystis genomes (Table 2).

Each genome contained between two and nine such gene clusters

accounting for 1.0 to 3.4% of the total genome size. Seven of these

clusters encode enzymes for the biosynthesis of known metabolites

(microcystins, aeruginosins, cyanopeptolins, microginins, anabae-

nopeptins, cyanobactins and microviridins), whereas the six

remaining clusters encode enzymes for the biosynthesis of so-far

unidentified products (Fig. 6).

Four of these gene clusters (cyanopeptolins, aeruginosins,

microcystin and microviridins) were found in most of the genomes

(Table 2), and their deduced amino acid sequences displayed high

percentages of amino-acid sequence identity (AASI) (.90%).

However, some variability was found in the aer gene cluster, both

in its composition (presence/absence of aerJ and aerM for instance)

and in the length of the gene sequences (1578 to 4287 bp long for

aerA in PCC 9432 and PCC 9807). With regard to the mdn gene

cluster, the MdnB-E proteins were highly conserved (AASI.90%),

whereas MdnA, which is involved in precursor synthesis, was less

conserved (.52%). Although some mdn genes were lost from the

PCC 9806 genome, the presence of mdnB and mdnD in this genome

indicated that the microviridin gene cluster was originally present

in all the Microcystis genomes examined.

All the other gene clusters potentially involved in the synthesis of

secondary metabolites were found in only one to four genomes.

For example, the proteins involved in the biosynthesis of

anabaenopeptins were extremely well conserved (AASI.97%) in

PCC 9432 and PCC 9701. On the other hand, the proteins

involved in the biosynthesis of microginin and of the cyanobactins

(such as microcyclamides) appeared to be less conserved

(AASI.85% and .82%, respectively). Similarly, the cyanobactin

gene cluster of PCC 9432 displayed considerable differences from

that present in PCC 7806.

In addition to these already well-known gene clusters, six

orphan gene clusters were also retrieved (Table 2, Fig. 6). The

extremities of these gene clusters have been defined by using the

available data from the first genome in which they have been

found (e.g. PKSImod/PKSIII, PKSI iterative in Frangeul et al.

[19]). For example, the high synteny and deduced amino acid

sequence identity (cluster of 12 adjacent genes with AASI.99.2%)

found between the PKSImodular/PKSIII gene clusters in four M.

Figure 3. Phylogenetic relationships (Maximum likelihood method) between the twelve Microcystis aeruginosa genomes (including
the two previously-available genomes of PCC 7806 and NIES-843). A. Phylogeny based on the alignment of seven housekeeping genes (ftsZ,
glnA, gltX, gyrB, pgi, recA and tpi; 217 informative sites). B. Phylogeny based on the alignment of 1989 genes belonging to the core genome
(SC = Subclade ; 144276 informative sites).
doi:10.1371/journal.pone.0070747.g003
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aeruginosa genomes revealed that this cluster contained at its 39end,

some additional genes to the ones previously described for this

cluster [19] (Fig. 6).

Three new putative NRPS and/or PKS gene clusters (MIC1,

MIC2 and MIC3) were retrieved from at least three genomes with

high AASI (.92%) and may be involved in the production of so-

far unknown compounds. MIC1 is the most promising gene

cluster, with adjacent NRPS and PKS genes and RND

superfamily efflux transporters. MIC2 and MIC3 were organized

as individual thiotemplate modular systems surrounded by

putative tailoring enzymes.

Finally, a Correspondence Analysis performed on the distribu-

tion of all these gene clusters among the twelve M. aeruginosa

genomes revealed that three (SC1, SC2 and SC3) of the four

subclades defined by our phylogenetic approach cannot be

distinguished by their content in these genes (Fig. S4). On the

other hand, the three genomes belonging to SC4 are clearly

differentiated from the other genomes by the absence of mcy and

aer gene clusters and more generally by their low content of genes

involved in the biosynthesis of secondary metabolites.

Discussion

Despite the multiple sequencing strategies used in this study and

the very high sequence coverage, the final assembly process was

impeded by the very high proportions of repeated sequences

present in the ten new M. aeruginosa genomes. However, several

observations indicate that a comparative genomic analysis could

be undertaken with good confidence. First, the percentage of 454

reads (around 97%) used for assembly was in the same range than

that obtained for finished genomes. Second, no gene was lacking

in the Minimal Gene Set of the ten new genomes, when compared

with that of the M. aeruginosa NIES-843 complete genome. Third,

an almost asymptotic curve for the core genome was reached, a

result that could not be obtained if numerous genes had been

missing in these genomes.

The adaptive capacities of M. aeruginosa, which may explain its

worldwide distribution and its ability to proliferate and to

dominate the phytoplankton communities in eutrophic freshwater

ecosystems, seem to rely on a particular genome evolutionary

strategy. This strategy combines a large genome plasticity,

characterized by a high number of repeated sequences, numerous

rearrangements and an ability to include new adaptive genes by

horizontal gene transfer.

Compared to other cyanobacterial genomes the M. aeruginosa

genomes display both high proportions of repeated sequences and

wide variations in their proportions depending on the strains. The

proportions of these repeats appear to be lower in the ten new M.

aeruginosa genomes than in the two previously-known ones

obtained by a Sanger-sequencing approach. The Newbler

assembler used for the assembly of the ten new genomes is known

to span a lot of repeats from the contigs [33], and so it is likely that

we have underestimated the proportions of repeats in the ten new

genomes. As previously described by Larsson et al. [34], who

Figure 4. Proportions of repeated sequences according to the size of the genomes in the ten new Microcystis aeruginosa genomes (black diamonds),
the two previously-available genomes (PCC 7806 and NIES-843) (gray diamonds) and other cyanobacterial genomes (Prochlorococcus AS9601
(number 1 in the figure) & MIT 9301 (2); Oscillatoria PCC 6506 (16); Nostoc ATCC 29133/PCC 73102 (18) & PCC 7120 (15); Synechococcus PCC 6301 (4),
JA-2-3B (7); JA-3-3ab (5); PCC 7002 (5) & CC 9311 (3); Synechocystis PCC 6803 (8), Trichodesmium IMS 101 (17); Anabaena ATCC 29413 (14); Cyanothece
PCC 7424 (13), PCC 7425 (12), PCC 8801 (9) & PCC 8802 (11); Gloeobacter PCC 7421 (10); white diamonds).
doi:10.1371/journal.pone.0070747.g004
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compared the genomes of different cyanobacterial genera, we also

found a positive correlation between the genome size and the

number of duplicated genes. It has been hypothesized that a

combination of both gene duplication and transfer of orthologous

alien genes, without replacement of the native genes, led to an

increase in genetic redundancy that contributes to the robustness

of biological systems, i.e. their ability to continue to function

despite external and internal perturbations (e.g. [35]). A contrario, a

loss of genetic redundancy in bacteria displaying a reductive

genome evolution, as observed in numerous pathogens [36] and in

oceanic picocyanobacteria of the genus Prochlorococcus [15], would

result in weak selection for robustness, reflecting the fact that these

microorganisms live in stable environments. Thus, the unusually

high genetic redundancy in the M. aeruginosa genomes might be

regarded as an evolutionary strategy that allows this cyanobacter-

ial species to occupy changing environments, such as freshwater

ecosystems.

Another peculiar trait of M. aeruginosa concerns the low synteny

values found for the twelve genomes analyzed in the present study.

These low synteny values contrast with the very high 16S rRNA

sequence similarities (.99.5%) found between M. aeruginosa

genomes, and indicate a rapid evolution of the gene organization

that probably permits to generate new combinations of genes

allowing different adaptive capacities to emerge.

The third feature of the M. aeruginosa genomes is that M.

aeruginosa, like Prochlorococcus [14,37], displays an open pangenome

that allows it to acquire new genes. Among them, it was very

interesting for example to find the gene cluster involved in the

biosynthesis of sucrose in M. aeruginosa PCC 7806 alone, because

sucrose is known to be involved in the salt acclimation mechanism

[38]. Indeed, Guljamow et al. [39] had identified actin and profilin

genes in PCC 7806 genome, which could be involved in the

adaptation to high osmotic stress. Thus, our finding reinforces the

hypothesis that PCC 7806 cells may have acquired by HGT two

gene clusters that have allowed them to survive and develop in

their original habitat (Braakman water reservoir, The Nether-

lands), which is known to have undergone successive changes in

the salt concentration during its history [39]. Another interesting

finding was the presence in M. aeruginosa PCC 9808 of a large gene

cluster (19 kb, IPF_1564–1566) potentially resulting from HGT

that illustrates the ability of M. aeruginosa to integrate large DNA

molecules into its chromosome.

The plasticity of the M. aeruginosa genome seems to be linked to

the ability of members of this species to bloom in a wide range of

ecosystems worldwide. However, such a strategy results in disorder

in the organization of the genome, and might also be costly for cell

functioning. For example, it has been shown that maintaining

redundant genes is costly when these genes belong to the core

Figure 5. Proportions of genes displaying a ±20% difference in their GC content, compared to the mean GC content of their whole
genome in the twelve Microcystis aeruginosa genomes (including the two previously-available genomes of PCC 7806 and NIES-843)
and in other cyanobacterial genomes.
doi:10.1371/journal.pone.0070747.g005
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Figure 6. Schematic representation of all the secondary metabolite gene clusters found in the twelve Microcystis aeruginosa
genomes (including the two previously-available genomes of PCC 7806 and NIES-843). For each biosynthesis cluster, the sketch
corresponds to the gene cluster present in the reference strain genome, its size in kb and the amino acid sequence identity estimated for the
orthologous region in the other Microcystis genomes. The reference strain genome corresponds to the one indicated in Table 2.
doi:10.1371/journal.pone.0070747.g006
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genes (e.g. [40]). With regard to synteny, it is not clearly

understood why selective pressures tend to promote the conser-

vation of gene order in bacterial genomes (e.g. [41]). However, the

conservation of chromosome organization in numerous species

suggests that this process benefits the cell, and is therefore

positively selected for, whereas changes in chromosome organiza-

tion are counter-selected. In the same time, as recalled by Vicente

and Mingorance [42], the plasticity of bacterial genomes resulting

from the acquisition and loss of DNA fragments, and also from

modifications in gene organization, has multiple effects on the

transcriptional networks that can lead, for example, to differential

regulation of the same gene in different M. aeruginosa strains. Thus,

a major challenge in the coming years will be to determine the

links between the physiological and ecological characteristics of M.

aeruginosa, and the selection in this species of a genome

evolutionary strategy based on high genome plasticity. Moreover,

one of the most interesting issues that will have to be tackled will

be also to better understand the impact of the chaotic population

dynamics (strong biomass oscillations) in M. aeruginosa populations

(see for example [43,44]) on the characteristics of the genome of

this species. Indeed, Handel and Rozen (2009) [45] have proposed

that the dynamics of evolutionary processes may be linked to the

interactions between various parameters, including the variations

in population size.

Bacteria are able to cope rapidly and efficiently with different

kinds of starvation and stress, which implies that the underlying

regulatory network can adjust to many different situations. The

overall behavior of bacteria is indeed a result of complex

connections between global regulators of gene expression. Since

the M. aeruginosa strains used in this study originated from different

environments, a search was performed for the absence/presence of

genes coding for pleiotropic regulators known to allow cyanobac-

terial cells to cope with stress or starvation conditions (NtcA, Fur,

AbrB, PerR, Crp for example) (all these data are available on

request from the authors). This analysis indicated that, as

expected, genes encoding the regulators required to respond to

forms of stress that are common in the ecological niches occupied

by the strains studied (high light acclimation, oxidative stress

response…) are well conserved in all twelve M. aeruginosa genomes.

However, specific regulatory networks may optimize the develop-

ment of a given strain in its ecological niche. These twelve M.

aeruginosa strains therefore provide an excellent group of very

closely related microorganisms for studying the impact of the

environment on the plasticity and evolution of regulatory

networks.

Genome-wide analyses have recently become very useful tools

for finding gene clusters potentially involved in the synthesis of

secondary metabolites in several cyanobacterial strains (e.g.

[46,47]). In M. aeruginosa, a cyanobacterial species that includes a

high number of toxic strains [48–50], large variations were found

in the organization of some of these clusters, and in their

sequences. For example, the organization and size of the aer

synthetase gene cluster showed more plasticity than previously

revealed by Ishida et al. [51]. With the exception of strains NIES-

843 and T1-4, the mdn precursor coding genes were clearly located

outside the mdn gene cluster in all the other genomes, which

corroborates the versatility of the biosynthetic enzyme MdnA

shown by Ziemert et al. [52]. Interestingly, the cyanobactin gene

cluster seems to encode microcyclamide in PCC 7806 [53,54], and

probably in PCC 9806 and 9809, but another type of cyanobactin

in PCC 9432. Considering the diversity of the cyanobactins in

cyanobacteria [55], Microcystis might produce more variants of

microcyclamides or perhaps of some other cyanobactins.

Among the 13 gene clusters involved in the biosynthesis of

secondary metabolites, microcystins, aeruginosins, cyanopeptolins

and microviridins were those most widely distributed in the twelve

Microcystis genomes, but it appeared that one subclade (SC4) was

clearly distinguishable from the others. These three strains

displayed the longest branches in the phylogenetic tree and

originated from different continents, suggesting that these widely

distributed NRPS/PKS gene clusters were lost early in the

evolutionary radiation of these strains. The common distribution

of the microcystin, aeruginosin and cyanopeptolin metabolites in

three other subclades compared to the more sporadic distribution

of the other secondary metabolites, suggest that putative interac-

tions lead to their joint conservation. The observation that their

gene expression profiles during a day/night cycle are similar [56],

is consistent with the above hypothesis.

In conclusion, it seems interesting to compare the main features

of the M. aeruginosa genomes with those of P. marinus, because

members of these two cyanobacterial species are characterized by

having wide geographical distributions, and play major roles in

their respective environments (freswater versus oceanic ecosystems).

From this comparison it appears that members of both species

display very different evolutionary strategies even if some common

features can be found in their genome organization. For example,

all these genomes contain almost the same proportions of core and

flexible genes, even if the mean size of the M. aeruginosa genomes

exceeds more than two fold that of the P. marinus genomes. In the

same way, both species display an open pangenome that permits

them to colonize various ecological niches.

But in contrast with Prochlorococcus, M. aeruginosa does not seem to

be organized in ecotypes, and its large genome contains a large

number of repeat sequences and a high proportion of transposases.

These characteristics might permit rapid variation in gene content

and the occurrence of new gene combinations allowing M.

aeruginosa populations to cope with various environmental condi-

tions encountered by this species. Moreover, the M. aeruginosa

genomes harbor wide genetic diversity with ribosomal and non-

ribosomal gene clusters dedicated to synthesis of these bioactive

compounds whereas the reduced genomes of P. marinus are nearly

devoid of all these secondary metabolite biosynthesis gene clusters,

even if it has been described that some Prochlorococcus strains are

able to produce various lantipeptides by using a single biosynthetic

enzyme gene [57]. Finally, it is interesting to consider the sharply

contrasting evolutionary strategies adopted by M. aeruginosa and P.

marinus, and their ability to dominate their respective habitats.

Freshwater ecosystems are very small in comparison to oceanic

areas, and consequently are more likely to display rapid

fluctuations in their physico-chemical and biological characteris-

tics. Knowing that the differentiation of ecotypes is linked to the

occupation of a stable niche, M. aeruginosa has developed another

winning genomic strategy based on the high plasticity of its

genome, to enable it to cope with and colonize unstable freshwater

ecosystems efficiently.
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Microcystis aeruginosa genomes (including the two
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specific gene cluster found in Microcystis aeruginosa
PCC 9808 (MICG_2110008- MICG_2120011) with that
found in Lyngbya majuscula and Herpetosiphon aurian-
tiacus genomes.

(TIF)

Figure S4 Correspondence analysis performed on the
distribution (coded as 1 when all the genes of the cluster
were present in a strain; 0.5 when the cluster was not
complete and 0 when no gene of the cluster was present)
of the clusters of genes involved in the biosynthesis of
secondary metabolites among the twelve M. aeruginosa
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