Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Spanning the isogeny class of a power of an ordinary elliptic curve.

Abstract : Let $E$ be an ordinary elliptic curve over a finite field and $g$ be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of $E^g$. The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre's obstruction for principally polarized abelian threefolds isogenous to $E^3$ and of the Igusa modular form in dimension $4$. We illustrate our algorithms with examples of curves with many rational points over finite fields.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Christophe Ritzenthaler <>
Soumis le : lundi 12 avril 2021 - 18:26:12
Dernière modification le : dimanche 2 mai 2021 - 03:11:26


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-02554714, version 1
  • ARXIV : 2004.08315


Markus Kirschmer, Fabien Narbonne, Christophe Ritzenthaler, Damien Robert. Spanning the isogeny class of a power of an ordinary elliptic curve.. 2021. ⟨hal-02554714v1⟩



Consultations de la notice


Téléchargements de fichiers