De Rham logarithmic classes and Tate conjecture - HAL UNIV-PARIS8 - open access
Pré-Publication, Document De Travail Année : 2023

De Rham logarithmic classes and Tate conjecture

Résumé

We introduce the definition of De Rham logarithmic classes. We show that the De Rham class of an algebraic cycle of an algebraic variety over a field of characteristic zero is logarithmic and conversely that a logarithmic class of bidegree (d, d) is the De Rham class of an algebraic cycle (of codimension d). We deduce from a previous work the Tate conjecture for smooth projective varieties over fields of finite type over Q, over p-adic fields and over field of characteristic p, p being a prime number.
Fichier principal
Vignette du fichier
LogTate4.pdf (178.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04034328 , version 1 (17-03-2023)
hal-04034328 , version 2 (03-04-2023)
hal-04034328 , version 3 (24-04-2023)
hal-04034328 , version 4 (18-05-2023)
hal-04034328 , version 5 (04-06-2023)
hal-04034328 , version 6 (19-06-2023)
hal-04034328 , version 7 (18-07-2023)
hal-04034328 , version 8 (06-08-2023)
hal-04034328 , version 9 (01-09-2023)
hal-04034328 , version 10 (12-09-2023)
hal-04034328 , version 11 (19-11-2023)
hal-04034328 , version 12 (24-09-2024)
hal-04034328 , version 13 (11-11-2024)

Identifiants

  • HAL Id : hal-04034328 , version 1

Citer

Johann Bouali. De Rham logarithmic classes and Tate conjecture. 2023. ⟨hal-04034328v1⟩
818 Consultations
163 Téléchargements

Partager

More