Towards Optimal Transport for Quantum Densities - Département de mathématiques
Journal Articles Annali della Scuola Normale Superiore di Pisa, Classe di Scienze Year : 2022

Towards Optimal Transport for Quantum Densities

Abstract

An analogue of the quadratic Wasserstein (or Monge-Kantorovich) distance between Borel probability measures on $\bR^d$ has been defined in [F. Golse, C. Mouhot, T. Paul: Commun. Math. Phys. 343 (2015), 165--205] for density operators on $L^2(\bR^d)$, and used to estimate the convergence rate of various asymptotic theories in the context of quantum mechanics. The present work proves a Kantorovich type duality theorem for this quantum variant of the Monge-Kantorovich or Wasserstein distance, and discusses the structure of optimal quantum couplings. Specifically, we prove that, under some boundedness and constraint hypothesis on the Kantorovich potentials, optimal quantum couplings involve a gradient type structure similar in the quantum paradigm to the Brenier transport map. On the contrary, when the two quantum densities have finite rank, the structure involved by the optimal coupling has, in general, no classical counterpart.
Fichier principal
Vignette du fichier
QuantumTransp11quinquies.pdf (656.84 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01963667 , version 1 (21-12-2018)
hal-01963667 , version 2 (06-02-2021)

Identifiers

  • HAL Id : hal-01963667 , version 2

Cite

Emanuele Caglioti, François Golse, Thierry Paul. Towards Optimal Transport for Quantum Densities. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, inPress. ⟨hal-01963667v2⟩
411 View
258 Download

Share

More